52 Matrice inversible.

Définition 1

Soient:

- $n \in \mathbb{N}^*$
- . A et B des éléments de $\mathcal{M}_n(\mathbb{R})$.

Nous dirons que A est *l'inverse* de B si et seulement si $AB = BA = I_n$.

Proposition 1

Une matrice $A \in \mathcal{M}_2(\mathbb{R})$ est inversible si et seulement si $\det(A) \neq 0$.

Exercice 1.

Soit
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
.

- 1. On note $P_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $P_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$.
 - (a) Calculez P_{13}^2 . Qu'en déduisez-vous pour P_{13} ?
 - (b) Calculez $P_{13} \times A$. Décrivez le résultat par une phrase en français.
 - (c) Même question avec P_{12} .
- 2. Soit $D_{1,-3} = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Démontrez que $D_{1,-3}$ est inversible. Puis donnez une interprétation du produit $D_{1,-3} \times A$.
- 3. Soit $T_{1,2,-3} = \begin{pmatrix} 1 & -3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Démontrez que $T_{1,2,-3}$ est inversible. Puis donnez une interprétation du produit $T_{1,2,-3} \times A$.

Soient
$$A = \begin{pmatrix} 7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2 \end{pmatrix}$$
 et $B = \begin{pmatrix} -2 & 8 & -5 \\ 3 & -11 & 7 \\ 9 & -34 & 21 \end{pmatrix}$.

- 1. Montrez que B est l'inverse de A.
- 2. Déduisez-en une solution de l'équation $A\vec{x} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Exercice 3.

Soient $n \ge 2$ et $A \in \mathcal{M}_n(\mathbb{R})$ inversible. Déterminez les solutions $B \in \mathcal{M}_n(\mathbb{R})$ de $A^{-1}BA = 0$.