43 Fonction de répartition.

I Définition.

Définition 1

Soient

- $\mathcal{X} = \{x_i \in \mathbb{R} \mid i \in I\},\$
- . $(\Omega, \mathcal{E}, \mathbb{P})$ un espace probabilisé,
- . $X:\Omega \to \mathcal{X}$ une variable aléatoire.

On appelle fonction de répartition de X, l'application

$$F_X: \left\{ \begin{array}{ccc} \mathbb{R} & \to & [0;1] \\ x & \mapsto & \mathbb{P}(X \leq x) \end{array} \right..$$

II Liens entre loi de probabilité et fonction de répartition.

Proposition 1

Soient

- $\mathcal{X} = \{x_i \in \mathbb{R} \mid i \in I\},\$
- . $(\Omega, \mathcal{E}, \mathbb{P})$ un espace probabilisé,
- . $X: \Omega \to \mathcal{X}$ une variable aléatoire.

$$F_X(x) = \sum_{\substack{x_i \in \mathcal{X} \\ x_i \le x}} \mathbb{P}(X = x_i).$$

Proposition 2

Soient

- $\mathcal{X} \subset \mathbb{N}$
- . $(\Omega, \mathcal{E}, \mathbb{P})$ un espace probabilisé,
- . $X: \Omega \to \mathcal{X}$ une variable aléatoire.

Pour tout $n \in \mathbb{N}$, $\mathbb{P}(X = n) = F_X(n) - F_X(n-1)$ et donc

$$F_X(n) = \sum_{k=0}^n P(X=k).$$

Proposition 3

$$\mathbb{P}(a < X \leq b) = F_X(b) - F_X(a).$$

Proposition 4

Soient

- $\mathcal{X} = \{x_i \in \mathbb{R} \mid i \in I\},\$
- . $(\Omega, \mathcal{E}, \mathbb{P})$ un espace probabilisé,
- . $X: \Omega \to \mathcal{X}$ une variable aléatoire.
 - (i) F_X est croissante sur \mathbb{R} .
 - (ii) $\lim_{x \to -\infty} F_X(x) = 0$,
- (iii) $\lim_{x \to +\infty} F_X(x) = 1,$
- (iv) $\lim_{\substack{x \to a \\ a < x}} F_X(x) = F_X(a)$.

Définition 2

Le quantile d'ordre α de X, appelé aussi α -quantile, est l'ensemble $Q_X(\alpha) = F_X^{-1}(\{\alpha\})$.