33 Noyau d'une application linéaire.

I Définition du noyau.

Définition 1

Soient:

- . n et m des entiers naturels non nuls,
- . f une application linéaire de \mathbb{R}^m dans \mathbb{R}^n .

Nous appellerons noyau de l'application linaire f l'ensemble

$$\ker(f) := \{ \vec{x} \in \mathbb{R}^m \mid f(\vec{x}) = \vec{0} \}.$$

Proposition 1

Soient:

- n et m des entiers naturels non nuls,
- . f une application linéaire de \mathbb{R}^m dans \mathbb{R}^n .

 $\ker(f)$ est un sous-espace vectoriel de \mathbb{R}^m .

II Applications linéaires injectives.

Proposition 2

Soient:

- . n et m des entiers naturels non nuls,
- . f une application linéaire de \mathbb{R}^m dans \mathbb{R}^n .

L'application linéaire f est injective si et seulement si $\ker(f) = \{0\}$.

Exercice 1.

Déterminez si l'application linéaire f est injective.

a)
$$f(x,y) = (2x + y, -x + 2y)$$

b)
$$f(x,y) = (2x + y, 3x + y, -x + 2y)$$
.

c)
$$f(x, y, z) = (x, -3z, -2y)$$
.

d)
$$f(x,y) = (3x + y, -9x - 3y)$$
.

IIIExercices.

Exercice 2.

Démontrez que $E = \{\vec{x} \in \mathbb{R}^3 \mid x_1 + x_3 = 0 \text{ et } 2x_1 - 3x_2 - x_3 = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 .