Dérivation.

I Une approche intuitive: un coefficient directeur.

II Des fonctions de référence.

On présente ci-dessous des fonctions f en donnant leur expression algébrique, celle de la fonction dérivée f' et le domaine de dérivabilité $\mathcal{D}_{f'}$ (i.e. l'ensemble des valeurs de x pour lesquels il est effectivement possible de calculer f'(x)). n désigne un entier naturel.

1 Les fonctions puissances.

f(x) =	3	x	x^2	x^3	x^4	x^n
f'(x) =	0	1	2x	$3x^2$	$4x^3$	nx^{n-1}
$x \in$	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}

2 Les fonctions polynomiales.

La fonction polynomiale (à coefficients réels)

$$P: x \mapsto a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

est dérivable sur \mathbb{R} et sa dérivée est

$$P': x \mapsto na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \dots + 2a_2 + xa_1.$$

Plus que la formule c'est sa mise en pratique qui est connaître.

3 Autres fonctions de référence à exposant.

f(x) =	$\frac{1}{x}$	$\frac{1}{x^2}$	$\frac{1}{x^n}$	x^{-n}	\sqrt{x}
f'(x) =	$-\frac{1}{x^2}$	$-\frac{2}{x^3}$	$-\frac{n}{x^{n+1}}$	$-nx^{-n-1}$	$\frac{1}{2\sqrt{x}}$
$x \in$	\mathbb{R}^*	\mathbb{R}^*	\mathbb{R}^*	\mathbb{R}^*	ℝ*,

Toutes les formules données ci-dessus relèvent d'une seule et même formule. Si $\alpha \in \mathbb{R}^*$ et si la fonction f est définie par

$$f(x) = x^{\alpha},$$

alors

$$f'(x) = \alpha x^{\alpha - 1},$$

pour x pris dans le domaine de dérivabilité (qui diffère suivant les valeurs de α).

4 D'autres classiques.

f(x) =	e ^x	$\ln(x)$	$\cos(x)$	$\sin(x)$	tan(x)	$\tan(x)$
f'(x) =	e ^x	$\frac{1}{x}$	$-\sin(x)$	$\cos(x)$	$\frac{1}{\cos^2(x)}$	$1 + \tan^2(x)$
$x \in$	\mathbb{R}	ℝ*,	\mathbb{R}	\mathbb{R}	$\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$	$\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$

III Sommes, produits, quotients, composées...

1 Linéarité.

Déterminez la fonction dérivée de
$$f: \begin{cases} \exists 0; +\infty[& \to & \mathbb{R} \\ x & \mapsto & \frac{1}{x} + \sqrt{x} \end{cases}$$

Exercice 2.

Déterminez la fonction dérivée de $f:]0;+\infty[\to\mathbb{R}$ sur son ensemble de définition dans les cas suivants :

- 1. $f(x) = 3x^2$ quel que soit x pris dans \mathbb{R}_+^* ,
- 2. $f(x) = -x^3$ quel que soit x pris dans \mathbb{R}_+^* ,
- 3. $f(x) = \frac{-2}{x}$ quel que soit x pris dans \mathbb{R}_+^* ,

Exercice 3.

Déterminez la dérivée de la fonction $f: \mathbb{R} \to \mathbb{R}$ dans les cas suivants.

- 1. f(x) = -2x + 7, quel que soit $x \in \mathbb{R}$,
- 2. $f(x) = x^3 6x^2 + 2$, quel que soit $x \in \mathbb{R}$,
- 3. $f(x) = -6x^7 x^5$, quel que soit $x \in \mathbb{R}$.

2 Produit.

Si u et v sont des fonctions dérivables sur un ensemble E alors leur produit $u \times v$ est dérivable sur E et

$$(u \times v)' = u'v + uv'.$$

Exercice 4.

Déterminez la dérivée de la fonction f en précisant l'ensemble de dérivabilité dans les cas suivants.

a)
$$f(x) = x^2 \sqrt{x}$$
,

b)
$$f(x) = \frac{\sqrt{x}}{x}$$
,

c)
$$f(x) = (2x^2 + 3x - 1)(5x^3 - 7x)$$
,

d)
$$f(x) = 4(x + \sqrt{x})x^3$$
,

e)
$$f(x) = \sin(x)\cos(x)$$
,

f)
$$f(x) = \ln(x)e^x$$
,

$$g) f(x) = x^2 \ln(x),$$

h)
$$f(x) = (2x^2 + 1)e^x$$
.

Exercice 5.

Déterminez les fonctions dérivées de la fonction f en précisant son ensemble de dérivabilité lorsque f est définie par :

a)
$$f(x) = x^3 \sqrt{x}$$
.

b)
$$f(x) = 3x^2 \ln(x) \sqrt{x}$$
.

c)
$$f(x) = (x^2 + 5x - 1)^2$$
.

d)
$$f(x) = (3x - 4)^2$$
.

3 Quotient.

Si u et v sont des fonctions dérivables sur un ensemble E alors leur quotient $u \times v$ est dérivable sur E, hormis les valeurs qui annulent v, et

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}.$$

Exercice 6.

Déterminez les fonctions dérivées des fonctions de la variable x suivantes.

a)
$$f(x) = \frac{1}{x^2}$$
,

b)
$$f(x) = \frac{2x^3 - 2x + 1}{x - 1}$$
,

c)
$$f(x) = \frac{\sqrt{x} + 1}{x^3}$$
,

d)
$$f(x) = \frac{\sin(x)}{\cos(x)}$$
.

Exercice 7. Application.

Déterminez les fonctions dérivées de la fonction f en précisant son ensemble de dérivabilité lorsque f définie par :

a)
$$f(x) = \frac{1}{3x - 12}$$
.

b)
$$f(x) = \frac{x^2 - 3x + 1}{x + 3}$$
.

c)
$$f(x) = \frac{1}{-5x+2}$$
.

d)
$$f(x) = \frac{1}{x^2 - 3x + 5}$$

e)
$$f(x) = -\frac{2}{7x+2}$$
.

f)
$$f(x) = \frac{x}{e^x}$$
.

g)
$$f(x) = \frac{3}{0.5x^2 + 1}$$
.

h)
$$f(x) = -4x + \frac{2}{\sqrt{x}}$$
.

i)
$$f(x) = \frac{-3x^2 + 4x + 1}{x^4 + x^2 + 1}$$
.

4 Composées.

Si $f:E\to F$ et $g:F\to G$ sont des fonctions dérivables alors leur composée $g\circ f$ est dérivable sur E et

$$(g \circ f)' = g' \circ f \times f'.$$

Exercice 8.

Calculez la dérivée de la fonction h dans les cas suivants.

a)
$$h(x) = (x^2 + 5)^3$$
.

b)
$$h(x) = (x^3 + 5)^{-3}$$
.

c)
$$h(x) = (x^2 + 2x)^4$$
.

d)
$$h(x) = (1 - 3x)^{10}$$
.

e)
$$h(x) = \sqrt{2 + x^2}$$
.

f)
$$h(x) = \sqrt{7x^2 + 3x + 1}$$
.

g)
$$h(x) = \sqrt{x^4 + x^2 + 1}$$
.

h)
$$h(x) = \sqrt{6x^4 + 3}$$
.

i)
$$h(x) = \left(\frac{x-1}{5}\right)^5$$
.

$$j) h(x) = \left(\frac{3-x}{3+x}\right)^2.$$

$$k) \ h(x) = \sqrt{1 + \sqrt{x}}.$$

1)
$$h(x) = \frac{1}{\sqrt{x-2}}$$
.

$$m) h(x) = e^{3x}.$$

n)
$$h(x) = e^{x-4}$$
.

o)
$$h(x) = e^{\frac{1}{x}}$$
.

$$p) h(x) = e^{\sqrt{x}}.$$

IV Étudier les variations d'une fonction.

V Formulaire.

f(x) =	3	x	x^2	x^3	x^4	x^n
f'(x) =	0	1	2x	$3x^2$	$4x^3$	nx^{n-1}
$x \in$	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}	\mathbb{R}

f(x) =	$\frac{1}{x}$	$\frac{1}{x^2}$	$\frac{1}{x^n}$	x^{-n}	\sqrt{x}
f'(x) =	$-\frac{1}{x^2}$	$-\frac{2}{x^3}$	$-\frac{n}{x^{n+1}}$	$-nx^{-n-1}$	$\frac{1}{2\sqrt{x}}$
$x \in$	ℝ*	ℝ*	ℝ*	ℝ*	ℝ*,

f(x) =	e^x	$\ln(x)$	$\cos(x)$	$\sin(x)$	tan(x)	$\tan(x)$
f'(x) =	e ^x	$\frac{1}{x}$	$-\sin(x)$	$\cos(x)$	$\frac{1}{\cos^2(x)}$	$1+\tan^2(x)$
$x \in$	\mathbb{R}	\mathbb{R}_+^*	\mathbb{R}	\mathbb{R}	$\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$	$\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$

Forme de f	uv	$rac{u}{v}$	$g \circ f$
Forme de f'	u'v + uv'	$\frac{u'v - uv'}{v^2}$	$g' \circ f \times f'$