Devoir surveillé CPGE B/L. 2022/11/03.

Exercice 1 : calcul numérique.

Partie A: calcul numérique.

1. a)
$$-2$$
.

b)
$$\frac{41}{21}$$
.

c)
$$\frac{32}{21}$$
. d) $\frac{1}{9}$.

d)
$$\frac{1}{9}$$
.

b)
$$6\sqrt{2}$$
.

c) 15. d)
$$2\sqrt{3}$$
.

3 a)
$$A = 5^8$$

c)
$$C = 17^{-9}$$
.

b)
$$B = 7^{15}$$
.

d)
$$D = 13^{13}$$
.

Partie B: calcul littéral.

1. a)
$$M(x) = 6x + 48$$
.

c)
$$P(x) = 8x^2 - 6x - 20$$
.

e)
$$R(x) = -9x^2 + 39x - 12$$
.

b)
$$N(x) = -14x + 10$$
.

d)
$$Q(x) = 25x^2 - 30x + 9$$
.

e)
$$R(x) = -9x^2 + 39x - 12$$
. f) $S(x) = -2x^3 - 11x^2 - 12x + 9$

2. a)
$$T(x) = x^4(2x^3 + x^2 - 5)$$
. b) $U(x) = (7x - 1)^2$.

c)
$$V(x) = (x - \sqrt{23})(x + \sqrt{23})$$
. d) $W(x) = (x + 4)(x - 5)$.

b)
$$U(x) = (7x - 1)^2$$
.

d)
$$W(x) = (x+4)(x-5)$$
.

Partie C: résolution d'équations.

les ensembles de solutions sont :

a)
$$\left\{\frac{1}{2}\right\}$$
.

b)
$$\{2,\frac{4}{3}\}$$
.

c)
$$\{1, -1\}$$
. d) $\{0\}$.

Partie D : étude du signe de fonctions.

a)

x	-∞		0		+∞
g_1		_	0	+	

b)

x	-∞		$\frac{7}{2}$		+∞
g_2		-	0	+	

c)

x	-∞		-2		1		+∞
-x + 1		+		+	0	-	
2x + 4		_	0	+		+	
g_3		_	0	+	0	_	

d)

x	-∞		-1		5		+∞
x-5		-		-	0	+	
x + 1		_	0	+		+	
g_4		+		_	0	+	

Exercice 2 : dérivées en vrac.

a)
$$f_1'(x) = \frac{1}{x}$$
.

b)
$$f_2'(x) = 12x^2 - 6x + 5$$
.

c)
$$f_3'(x) = 3\sqrt{x} + \frac{3x-1}{2\sqrt{x}}$$
.

d)
$$f_4'(x) = \frac{e^x(x^2+1)-e^x \times 2x}{(x^2+1)^2}$$
.

e)
$$f_5'(x) = \frac{1}{2x}$$
.

f)
$$f_6'(x) = -\frac{1}{(x-2)^2} \exp\left(\frac{x+1}{x-2}\right)$$
.

Exercice 3 : étude des variations d'une fonction.

$$f'(x) = (x^2 - x - 6)e^x$$
.
 f' est du signe de $g: x \mapsto x^2 - x - 6$.

Or 2 et -3 sont racines de la fonction polynomiale de degré deux g donc

x	-∞	-3		2	+∞
f'		+ 0	_	0	+
f		6e ⁻³	` .	$-4e^2$	

Exercice 4.

a) D'après le cours :

$$A_n \xrightarrow[n \to +\infty]{} +\infty.$$

b)
$$n^3 \xrightarrow[n \to +\infty]{} + \infty$$
 et $\sqrt{n} \xrightarrow[n \to +\infty]{} + \infty$ par produit

$$B_n \xrightarrow[n \to +\infty]{} +\infty.$$

c)
$$\frac{1}{n} + 3 \longrightarrow_{n \to +\infty} 3$$
 et $n^2 \longrightarrow_{n \to +\infty}$ par quotient

$$C_n \xrightarrow[n \to +\infty]{} 0.$$

d)
$$\lim_{n\to+\infty} \frac{n^3-n^2+4}{n^5-n^3+n} = \lim_{n\to+\infty} \frac{n^3}{n^5} = \lim_{n\to+\infty} \frac{1}{n^2} = 0$$
 donc

$$D_n \xrightarrow[n \to +\infty]{} 0.$$

e) e > 1 donc par comparaison des suites géométriques et puissances

$$E_n \xrightarrow[n \to +\infty]{} +\infty.$$

f) Par comparaison des suites géométrique et puissance $\frac{n!}{3^n} \xrightarrow[n \to +\infty]{} + \infty$ puis par produit

$$F_n \xrightarrow[n \to +\infty]{} +\infty.$$

g)

$$\sqrt{n^2 + n + 1} - \sqrt{n^2 + n} = \frac{\sqrt{n^2 + n + 1} - (n^2 + n)}{\sqrt{n^2 + n + 1} + \sqrt{n^2 + n}}$$
$$= \frac{1}{\sqrt{n^2 + n + 1} + \sqrt{n^2 + n}}$$

Or $\sqrt{n^2+n+1}+\sqrt{n^2+n} \underset{n \to +\infty}{\longrightarrow} +\infty$ donc par passage à l'inverse

$$G_n \xrightarrow[n \to +\infty]{} 0.$$

h)

$$H_n = n \sum_{k=0}^{n} \left(\frac{1}{\pi}\right)^n$$
$$= n \frac{\left(\frac{1}{\pi}\right)^{n+1} - 1}{\frac{1}{\pi} - 1}$$

Or
$$-1 < \frac{1}{\pi} < 1$$
 donc $\left(\frac{1}{\pi}\right)^n \xrightarrow[n \to +\infty]{} 0$.

Finalement

$$H_n \xrightarrow[n \to +\infty]{} +\infty.$$

Exercice 5.

1. Première étape choix de la phrase (qui dépend de n) à démontrer.

Notons P(n) la phrase $v_n = 2 - \frac{n+2}{2^n}$ où n désigne un entier naturel supérieur à 1.

Démontrons par récurrence que P(n) est vraie pour tous les entiers naturels n supérieurs à 1.

* Initialisation : il faut vérifier que la phrase P(1) est vraie. Autrement dit il faut établir que $v_1 = 2 - \frac{1+2}{2^1}$ est vraie.

D'une part $v_1 = v_0 + \frac{1}{2^1} = \frac{1}{2}$ et d'autre part $2 - \frac{1+2}{2^1} = \frac{1}{2}$ donc $v_1 = 2 - \frac{1+2}{2^1}$. Ainsi P(1) est vraie.

* Hérédité. Il faut établir que pour un rang particulier si P(n) est vraie alors la phrase suivante P(n+1) l'est aussi.

Soit $n \in \mathbb{N}^*$.

Supposons P(n) vraie.

Démontrons qu'alors P(n+1) est vraie.

D'après la formule de récurrence définissant la suite (v_n) :

$$v_{n+1} = v_n + \frac{n+1}{2^{n+1}}$$

Or, d'après la formule de récurrence, v_n = $2-\frac{n+2}{2^n}$ donc

$$v_{n+1} = 2 - \frac{n+2}{2^n} + \frac{n+1}{2^{n+1}}$$

En mettant au même dénominateur :

$$v_{n+1} = 2 - \frac{2(n+2)}{2^{n+1}} + \frac{n+1}{2^{n+1}}$$
$$= 2 - \frac{n+1+2}{2^{n+1}}$$

Nous obtenons bien P(n+1).

* Nous avons démontré par récurrence que

$$\forall n \in \mathbb{N}^*, \, v_n = 2 - \frac{n+2}{2^n}$$

2. Démontrons que (v_n) est majorée.

Soit $n \ge 1$.

$$\frac{n+2}{2^n} \ge 0$$
 donc $v_n = 2 - \frac{n+2}{2^n} \ge 2$.

$$(v_n)$$
 est majorée par 2.

3. (a) Démontrons par récurrence sur $n \ge 2$ que $n + 2 \le 2^n$.

*
$$2 + 2 \le 2^2$$
.

*

$$2^{n} \ge n+2$$

$$2^{n} \times 2 \ge (n+2) \times 2$$

$$2^{n+1} \ge 2n+4$$

$$\ge n+1+2+(n+1)$$

$$\ge n+1+2$$

* On a démontré par récurrence que

$$\forall n \in \mathbb{N}, n \ge 2 \Rightarrow n + 2 \le 2^n$$
.

(b) démontrons que (v_n) est minorée par 0.

Soit $n \ge 2$.

D'après la question précédente

$$n+2 \le 2^n$$

$$\frac{n+2}{2^n} \le 1$$

$$-\frac{n+2}{2^n} \ge -1$$

$$2 - \frac{n+2}{2^n} \ge 2 - 1$$

$$v_n \ge 1$$

De plus $v_0 = 0$ et $v_1 = \frac{1}{2}$ donc

 (v_n) est minorée par 0.

- 4. Démontrons que (v_n) est convergente.
 - * Soit $n \ge 1$.

 $v_n - v_{n-1} = \frac{n}{2^n} \ge 0$ donc $(v_n)_{n \ge 1}$ est croissante.

* Comme de plus $(v_n)_{n\geq 1}$ est majorée finalement

 (v_n) est convergente.

Exercice 6.

1. Démontrons que G n'est pas un sous-espace vectoriel de \mathbb{R}^2 .

Raisonnons par l'absurde : supposons G sous-ev. Alors $0 \in G$. Or $6 \times 0 + 3 \times 1 \neq 0$ donc $0 \notin G$ ce qui est impossible.

G n'est pas un sous-espace vectoriel de \mathbb{R}^2 .

2. Démontrons que F est un sous-espace vectoriel de \mathbb{R}^2 .

(i) $F \subset \mathbb{R}^2$.

(ii)
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in F \text{ car } 6 \times 0 + 3 \times 0 = 0.$$

(iii) Soient $a \in \mathbb{R}$, $x,y \in F$.

On a donc :
$$\begin{cases} 6x_1 + 3y_1 = 0 \\ 6x_2 + 3y_2 = 0 \end{cases} .$$

$$a \cdot x + y = \begin{pmatrix} ax_1 + y_2 \\ ax_2 + y_2 \end{pmatrix}$$

Vérifions que $a \cdot x + y \in F$.

$$6 \times (ax_1 + y_1) + 3(ax_2 + y_2) = a6x_1 + a3x_2 + 6y_1 + 3y_2$$
$$= a(6x_1 + 3x_2) + 6y_1 + 3y_2$$
$$= 0$$

donc $a \cdot x + y \in F$.

D'après les trois points précédents

F est un sous-espace vectoriel de \mathbb{R}^2 .

3. $X \in \mathbb{R}^2 \text{ et } 6 \times 1 + 3 \times (-2) = 0 \text{ donc}$

$$X \in F$$
.

4. (a) $Y \in \mathbb{R}^2$ mais $6 \times 3 + 3 \times 1 = 21 \neq 0$ donc

$$Y \notin F$$
.

$$2X - 3Y = \begin{pmatrix} -4 \\ -7 \end{pmatrix}.$$

(c)
$$a \cdot X + b \cdot Y = 0 \Leftrightarrow \begin{pmatrix} a \times 1 + b \times 3 \\ a \times (-2) + b \times 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} a + 3b = 0 \\ -2a + b = 0 \end{cases}$$
.

(d) Résolvons (E).

$$\begin{cases} a + 3b = 0 \\ -2a + b = 0 \end{cases}.$$

équivaut successivement à

$$\begin{cases} a + 3b = 0 \\ 5b = 0 & L_2 \leftarrow L_2 + 2L_1 \end{cases}$$

$$\begin{cases} a + 3b = 0 \\ b = 0 & L_2 \leftarrow \frac{1}{5}L_2 \end{cases}$$

$$\begin{cases} a = 0 & L_1 \leftarrow L_1 - 3L_2 \\ b = 0 \end{cases}$$

Le système admet une unique solution (0,0).

(e) Démontrons que X et Y ne sont pas colinéaires.

* Première méthode : la seule combinaison linéaire nulle est celle dont les coefficients sont nuls.

Nous avons démontré à la question précédente que pour $a \cdot X + b \cdot Y = 0$ il faut que a = b = 0.

Autrement dit il est impossible de trouver $\lambda \in \mathbb{R}$ non nul et tel que $\lambda \cdot X = Y$ ou $X = \lambda Y$.

X et Y ne sont pas colinéaires.

* Deuxième méthode : calcul du déterminant de deux vecteurs de \mathbb{R}^2 .

$$det(X,Y) = \begin{vmatrix} 1 & 3 \\ -2 & 1 \end{vmatrix}$$
$$= 1 \times 1 - (-2) \times 3$$
$$= 7$$

 $\det(X,Y) \neq 0 \text{ donc}$

X et Y ne sont pas colinéaires.

- * Troisième méthode : s'assurer qu'il n'y a pas de proportionnalité entre les coordonnées de X et Y.
- 5. Démontrons que F est une droite vectorielle de \mathbb{R}^2 .

Au moins deux procédés:

- Montrer qu'il existe un vecteur non nul qui engendre F. Et puisque $X \in F \setminus \{0\}$ il faudrait montrer que tous les éléments de F peuvent s'écrire $t \cdot X$ pour $t \in \mathbb{R}$.
- En utilisant le fait les seuls sous-espace vectoriel de \mathbb{R}^2 sont $\{0\}$, \mathbb{R}^2 et les droites vectorielles.

D'après les questions précédentes, F est un sous-espace vectoriel qui n'est pas $\{0\}$ (puisqu'il contient le vecteur non nul X) ni \mathbb{R}^2 (puisqu'il ne contient pas le vecteur Y) donc, forcément,

F est une droite vectorielle de \mathbb{R}^2 .

6. Déterminons une représentation paramétrique de F.

D'après ce qui précède $F\{t\cdot X\ |\ t\in\mathbb{R}\}$ et $X=\begin{pmatrix}1\\-2\end{pmatrix}\in\mathbb{R}^2$ donc

$$F: \left\{ \begin{array}{ll} m_1 = & t \\ m_2 = & -2t \end{array}, t \in \mathbb{R} \right.$$

Exercice 7.

Partie A: une équation.

1. $f(0) = 1 + \ln(1+0)$

$$f(0) = 1.$$

- 2. Étudions les variations de f sur $[0; +\infty[$.
 - * Calcul de la dérivée.

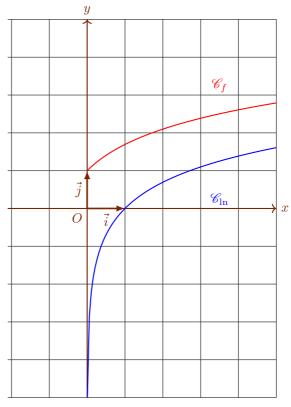
ln étant dérivable sur \mathbb{R}_+^* , f l'est sur $[0; +\infty[$ en tant que fonction composée.

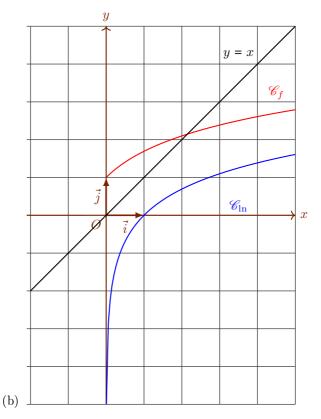
Pour tout $x \in \mathbb{R}_+$

$$f'(x) = \frac{1}{1+x}$$

- * Étude du signe de la dérivée et variations de la fonction. Clairement f'(x) > 0 sur \mathbb{R}_+ et donc f est strictement croissante.
- * Limites aux bornes du domaine de définition. Clairement, par composition, $\lim_{x\to+\infty} f(x) = +\infty$.

x	0	+∞
f	1	+∞





(c) d'après le graphique il semble que

l'équation f(x) = x admet une unique solution dans $[0; +\infty[.$

Partie B: approcher α .

1. Démontrons l'implication : si $x \in [0, +\infty[$ alors $f(x) \in [0, +\infty[$.

Soit $x \ge 0$.

Puisque f est croissante sur $[0, + \infty[$

$$f(x) \ge f(0)$$

Or f(0) = 1 donc

$$f(x) \ge 1 \ge 0$$
.

Nous avons démontré que $[0, +\infty[$ est stable par f.

- 2. Démontrons par récurrence que $u_{n+1} \ge u_n$ pour tout $n \in \mathbb{N}$.
 - * $u_0 = 1$ et $f(u_0) = f(1) = 1 + \ln(2) \ge 1$ car $\ln(2) > 0$.
 - * Soit $n \in \mathbb{N}$. Supposons $u_{n+1} \ge u_n$. f est croissante sur $[0; +\infty[$ (et, pour tout $k \in \mathbb{N}, u_k \ge 0)$ donc

$$f(u_{n+1}) \ge f(u_n)$$
$$u_{n+2} \ge u_{n+1}$$

* On a démontré par récurrence que

 (u_n) est croissante.

3. Par une récurrence immédiate $(u_n)_{n\in\mathbb{N}}$ est croissante donc minorée par $u_0=1$:

 $(u_n)_{n\in\mathbb{N}}$ est minorée par 1.

4. Démontrons l'encadrement proposé.

Pour démontrer cet encadrement nous allons établir chaque inégalité séparément.

- * Nous avions déjà remarqué que f'>0 donc a fortiori $f'\geqslant 0$.
- * Soit $x \ge 1$. Donc

$$1 + x \ge 2$$

Et puisque $x \mapsto \frac{1}{x}$ est décroissante sur \mathbb{R}_+ :

$$\frac{1}{1+x} \le \frac{1}{2}$$

$$\forall x \in [1, +\infty[, 0 \le f'(x) \le \frac{1}{2}]$$

5. En choisissant $x=u_n$ dans l'inégalité proposée :

$$|f(u_n) - f(\alpha)| \le \frac{1}{2} |u_n - \alpha|$$

Or $f(u_n) = u_{n+1}$ et $f(\alpha) = \alpha$ donc

$$|u_{n+1} - \alpha| \le \frac{1}{2} |x - \alpha|.$$

- 6. * $|u_0 \alpha| \le \left(\frac{1}{2}\right)^0 |u_0 \alpha|$.
 - * D'après la question précédente :

$$|u_{n+1} - \alpha| \le \frac{1}{2}|u_n - \alpha|$$

D'après l'hypothèse de récurrence :

$$|u_{n+1} - \alpha| \le \frac{1}{2} \times \left(\frac{1}{2}\right)^n |u_0 - \alpha|$$
$$= \left(\frac{1}{2}\right)^{n+1} |u_0 - \alpha|$$

$$\forall n \in \mathbb{N}, |u_n - \alpha| \le \left(\frac{1}{2}\right)^n |u_0 - \alpha|.$$

7. $0 \le |u_n - \alpha| \le \left(\frac{1}{2}\right)^n |u_0 - \alpha|$.

Or
$$-1 < \frac{1}{2} < 1$$
 donc $\left(\frac{1}{2}\right)^n |u_0 - \alpha| \underset{n \to +\infty}{\longrightarrow} 0$.

On en déduit, d'après le théorème des gendarmes que ($|u_n - \alpha|$) converge vers 0.

Finalement

$$(u_n - \alpha)$$
 converge vers 0.

8. $u_n \xrightarrow[n \to +\infty]{} \alpha.$

9. $u_n \xrightarrow[n \to +\infty]{} \alpha$ signifie que la valeur de u_n se rapproche de celle de α lorsque n grandi.

10. Démontrons que : $\forall n \in \mathbb{N}, |u_n - \alpha| \leq \frac{1}{2^{n-1}}$.

Soit $n \in \mathbb{N}$.

* D'une part : D'après la question 6 :

$$|u_n - \alpha| \le \left(\frac{1}{2}\right)^n |u_0 - \alpha|$$

* D'autre part

$$1 \le \alpha \le 3$$

$$1 - u_0 \le \alpha - u_0 \le 3 - u_0$$

$$0 \le \alpha - u_0 \le 2$$

Donc

$$|u_0 - \alpha| \le 2$$

Nous en déduisons

$$|u_n - \alpha| \le \left(\frac{1}{2}\right)^n \times 2.$$

Ainsi

$$\forall n \in \mathbb{N}, |u_n - \alpha| \leq \frac{1}{2^{n-1}}$$

Déterminons n.

Pour que $|u_n - \alpha| \le 10^{-3}$ il suffit que $\frac{1}{2^{n-1}} \le 10^{-3}$. Or

$$\frac{1}{2^{n-1}} \le 10^{-3} \iff \ln\left(\frac{1}{2^{n-1}}\right) \le \ln\left(10^{-3}\right)$$
$$\iff -(n-1)\ln(2) \le -3\ln(10)$$
$$n \ge 1 + 3\frac{\ln(10)}{\ln(2)}$$

pour avoir une valeur approchée de α à 10^{-3} près l'faut utiliser u_n avec $n \ge 1 + 3 \frac{\ln(10)}{\ln(2)}$.

Exercice 8.

1. (a) $v_{n+1} - u_{n+1} = \frac{u_n + 2v_n}{3} - \frac{u_n + v_n}{2} = \frac{v_n - u_n}{6}$

 $(v_n - u_n)$ est géométrique de raison $\frac{1}{6}$ et de terme initial $v_0 - u_0 = 12$.

(b) $-1 < \frac{1}{6} < 1$ donc

$$v_n - u_n \xrightarrow[n \to +\infty]{} 0.$$

- 2. * Nous avons déjà démontré que $v_n u_n \xrightarrow[n \to +\infty]{} 0$.
 - * $u_{n+1} u_n = \frac{u_n + v_n}{2} u_n = \frac{1}{2}(v_n u_n)$. Or $(v_n - u_n)$ est géométrique donc $u_{n+1} - u_n = \frac{1}{2} \times \frac{12}{6^{n+1}} \ge 0$. Donc (u_n) est croissante.
 - * $v_{n+1} v_n = -\frac{1}{2} = -\frac{1}{2}(v_n u_n) = -\frac{1}{2} \times \frac{12}{6^{n+1}} \le 0.$ Donc (v_n) est décroissante.

 (u_n) et (v_n) sont adjacentes.

3. (a) Si elle est constante alors tous les termes égalent le premier $2u_0 + 3v_0 = 2 \times 0 + 3 \times 12 = 36$.

Démontrons par récurrence que $2u_n + 3v_n = 36$ pour tout $n \in \mathbb{N}$.

*
$$2u_0 + 3v_0 = 2 \times 0 + 3 \times 12 = 36$$
.

Ψ

$$2u_{n+1} + 3v_{n+1} = 2\frac{u_n + v_n}{2} + 3\frac{u_n + 2v_n}{3}$$
$$= 2u_n + 3v_n$$
$$= 36$$

(b) Elles convergent vers la même limite ℓ qui doit vérifier $2\ell + 3\ell = 36$.

$$(u_n)$$
 et (v_n) convergent vers $\frac{36}{5}$.

Exercice 9.

1.
$$h'_n(x) = \frac{nx+n+1}{(1+x)^2}$$
.
 $h'_n(x) > 0 \iff x > -\frac{n+1}{n}$.

Donc h_n est strictement croissante.

(c)

Comme $h_n(0) = 0$ on en déduit

x	-1		0		+∞
h_n		_	0	+	

- 2. (a)
 - (b) Si n est impair alors n-1 est pair : $\exists k \in \mathbb{N}, n=2k$. Donc $x \mapsto (x^2)^k$ est positive donc f'_n est du signe de h_n .

x	-1		0		+∞
h_n		-	0	+	
f_n	+	∞ →	0 -		+∞

x	-1		0		+∞
$x^{n-1}h_n$		+	0	+	
f_n	_	-∞	0		+∞

3. (a)

$$f_1(x) - f_2(x) = x \ln(1+x) - x^2 \ln(1+x)$$
$$= x(1-x) \ln(1+x)$$

x	-1		0		1		+∞
$f_1(x) - f_2(x)$		+	0	+	0	_	

(b)

Exercice 10.

- 1. On met au même dénominateur.
- 2. (a)

$$S_n = \sum_{k=1}^n \frac{2}{k} - \frac{4}{k+1} + \frac{2}{k+2}$$

$$= \sum_{k=1}^n \frac{2}{k} - \frac{2}{k+1} - \frac{2}{k+1} + \frac{2}{k+2}$$

$$= \sum_{k=1}^n \left(\frac{2}{k} - \frac{2}{k+1}\right) + \sum_{k=1}^n \left(-\frac{2}{k+1} + \frac{2}{k+2}\right)$$

$$= 2\sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) + 2\sum_{k=1}^n \left(-\frac{1}{k+1} + \frac{1}{k+2}\right)$$

(b)
$$S_n = 2\sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) + 2\sum_{k=1}^n \left(-\frac{2}{k+1} + \frac{2}{k+2}\right)$$

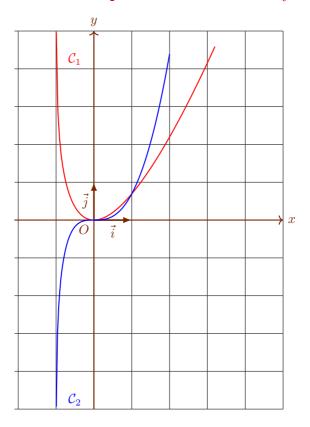
$$= 2\left(1 - \frac{1}{n+1}\right) + 2\left(\frac{1}{n+2} - \frac{1}{2}\right)$$

$$= 1 - \frac{2}{n+1} - \frac{2}{n+2}$$

$$= 1 - \frac{2}{(n+1)(n+2)}$$

(c)
$$S_n \xrightarrow[n \to +\infty]{} 0$$
.

Annexe 1 : courbes représentatives de \ln et f.



Annexe 2 : courbes représentatives de C_1 et C_2 .