Devoir maison pour le 2022/09/27.

Correction de l'exercice 0

- 1. Démontrons par récurrence que $\mathscr{P}(n)$: « $1 \le u_n \le 2$ » est vraie pour tout $n \in \mathbb{N}^*$.
 - * Initialisation.

Nous voulons vérifier que $\mathcal{P}(1)$ est vraie, autrement dit que $1 \le u_1 \le 2$. Or $u_1 = 1$ donc $1 \le u_1 \le 2$.

Ainsi : $\mathcal{P}(1)$ est vraie.

* Hérédité.

Soit $n \in \mathbb{N}^*$.

Supposons que $\mathscr{P}(n)$ est vraie et uniquement $\mathscr{P}(n)$, pas $\mathscr{P}(n+1)$ ni $\mathscr{P}(n-1)$. Démontrons que $\mathscr{P}(n+1)$ est vraie, autrement dit il faut établir que $1 \le u_{n+1} \le 2$. D'après l'hypothèse de récurrence :

$$1 \le u_n \le 2.$$

Or $f: x \mapsto \frac{1}{2}x + 1$ est une fonction affine strictement croissante puisque son coefficient directeur est strictement positif, donc:

$$f(1) \leqslant f(u_n) \leqslant f(2).$$

Autrement dit:

$$\frac{3}{2} \leqslant u_{n+1} \leqslant 2.$$

Comme de plus $1 \le \frac{3}{2}$ on a bien :

$$1 \le u_{n+1} \le 2.$$

 $\mathcal{P}(n+1)$ est donc vraie.

* Conclusion.

Nous avons démontré par récurrence que

$$\forall n \in \mathbb{N}^*, 1 \leq u_n \leq 2.$$

2. Démontrons que $(u_n)_{n\in\mathbb{N}^*}$ est croissante.

Nous allons démontrer que $\forall n \in \mathbb{K}^*, u_{n+1} - u_n \ge 0.$

Soit $n \in \mathbb{N}^*$.

Par définition de la suite :

$$u_{n+1} = \frac{1}{2}u_n + 1.$$

Donc:

$$u_{n+1} - u_n = \frac{1}{2}u_n + 1 - u_n.$$

i.e.

$$u_{n+1} - u_n = -\frac{1}{2}u_n + 1.$$
 (1)

40

D'après la question précédente, $u_n \leq 2$ et donc

$$-\frac{1}{2} \times u_n \ge -\frac{1}{2} \times 2 \text{ car } -\frac{1}{2} < 0$$
$$-\frac{1}{2} u_n \ge -1$$
$$1 - \frac{1}{2} u_n \ge 1 - 1$$
$$-\frac{1}{2} u_n + 1 \ge 0$$

Donc par transitivité avec (1):

$$u_{n+1} - u_n \geqslant 0.$$

Nous avons démontré que : $\forall n \in \mathbb{N}^*, u_{n+1} - u_n \ge 0.$

Autrement dit:

 $(u_n)_{n\in\mathbb{N}^*}$ est croissante.

Avec une démonstration par récurrence nous aurions pu établir un meilleur résultat : $(u_n)_{n\in\mathbb{N}^*}$ est strictement croissante.

3. $(u_n)_{n\in\mathbb{N}^*}$ est croissante et majorée par 2 donc

 $(u_n)_{n\in\mathbb{N}^*}$ est convergente.

- 4. (a) Démontrons par récurrence que $\mathcal{R}(n)$: « $u_n = -\frac{1}{2^{n-1}} + 2$ » est vraie pour tout $n \in \mathbb{N}^*$.
 - * Initialisation.

Nous voulons vérifier que $\mathcal{R}(1)$ est vraie, autrement dit que $u_1 = -\frac{1}{2^{1-1}} + 2$. Il s'agit de vérifier une égalité : on calcul séparément chaque membre.

D'une part $u_1=1$, d'après l'énoncé, et d'autre part, $-\frac{1}{2^{1-1}}+2=1$ donc $\mathcal{R}(1)$ est vraie.

* Hérédité.

Soit $n \in \mathbb{N}^*$.

Supposons que $\mathcal{R}(n)$ est vraie. Notre hypothèse de récurrence est donc : $u_n = -\frac{1}{2^{n-1}} + 2$.

Démontrons que $\mathcal{R}(n+1)$ est vraie. Nous devons donc établir que $u_{n+1} = -\frac{1}{2^n} + 2$.

Par définition de $(u_n)_{n\in\mathbb{N}^*}$:

$$u_{n+1} = \frac{1}{2}u_n + 1.$$
 (2)

Or, d'après l'hypothèse de récurrence $u_n = -\frac{1}{2^{n-1}} + 2$ donc, en substituant dans (2) :

$$u_{n+1} = \frac{1}{2} \times \left(-\frac{1}{2^{n-1}} + 2 \right) + 1.$$

Donc:

$$u_{n+1} = -\frac{1}{2} \times \frac{1}{2^{n-1}} + \frac{1}{2} \times 2 + 1$$
$$= -\frac{1}{2 \times 2^{n-1}} + 2$$
$$= -\frac{1}{2^n} + 2$$

Ainsi $\mathcal{P}(n+1)$ est donc vraie.

* Conclusion.

Nous avons démontré par récurrence que

$$\forall n \in \mathbb{N}^*, \ u_n = -\frac{1}{2^{n-1}} + 2.$$

(b) $\left(\left(\frac{1}{2}\right)^{n-1}\right)_{n\geq 1}$ est une suite géométrique dont la raison est $\frac{1}{2}\in]-1;1[$ donc $\left(\frac{1}{2}\right)^{n-1}\underset{n\to+\infty}{\longrightarrow}0.$

Finalement, en utilisant l'expression explicite de (u_n) trouvée à la question précédente :

$$u_n \xrightarrow[n \to +\infty]{} 2.$$

5. Notons ℓ la limite de (u_n) .

En passant à la limite dans la formule de récurrence définissant (u_n) on obtient :

$$\ell = \frac{1}{2}\ell + 1.$$

Cette équation, du premier degré, équivaut successivement à :

$$\ell - \frac{1}{2}\ell = \frac{1}{2}\ell + 1 - \frac{1}{2}\ell$$
$$\frac{1}{2}\ell = 1$$
$$2 \times \frac{1}{2}\ell = 2 \times 1$$

Finalement

 $(u_n)_{n\in\mathbb{N}^*}$ converge vers 2.

Correction de l'exercice 0

- 1. (a) Étudions les variations de f.
 - * Identification de la fonction de référence ou de la formule pour pouvoir dérivé.

f est une fonction polynomiale.

* Domaine de dérivabilité.

f est donc dérivable sur [0; 8].

* Calcul de la dérivée.

Soit $x \in [0; 8]$.

$$f'(x) = 1.4 - 2 \times 0.05x$$
$$= -0.1x + 1.4$$

* Étude du signe de la dérivée : identification dune fonction de référence, d'une fonction affine, d'une fonction polynomiale de degré deux, d'un produit, d'un quotient, factorisation, ...

f' est une fonction affine avec a = -0.1 et b = 1.4.

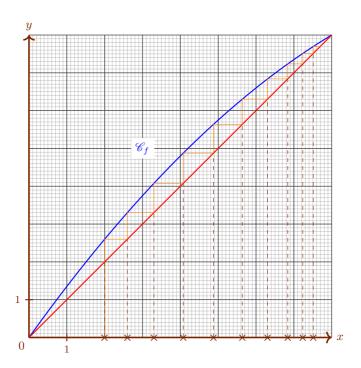
Donc f' s'annule en $-\frac{b}{a}=-\frac{1,4}{-0,1}=14$ et f' est strictement décroissante puisque a<0.

Donc:

Conclusion sous forme d'un tableau de variation incluant le signe de la fonction dérivée (bien qu'en l'espèce une phrase en français conviendrait tant le cas est simple).

x	0	8
f'	+	
f	0	* 8

(b)



(c) D'après le graphique ci-dessus

 $(v_n)_{n\geq 0}$ semble converger vers 8.

- 2. Démontrons par récurrence que $\mathscr{P}(n)$: « $2 \le v_n \le v_{n+1} \le 8$ » est vraie pour tout $n \in \mathbb{N}$.
 - * Initialisation.

Nous voulons vérifier que $\mathcal{P}(0)$ est vraie, autrement dit que $2 \le v_0 \le v_1 \le 8$. Or $v_0 = 2$ et $v_1 = f(v_0) = f(2) = 1,4 \times 2 - 0,05 \times 2^2 = 2,6$ donc $2 \le v_0 \le 2,6 \le 8$. Ainsi : $\mathcal{P}(0)$ est vraie.

* Hérédité.

Soit $n \in \mathbb{N}$.

Supposons que $\mathcal{P}(n)$ est vraie.

Démontrons que $\mathscr{P}(n+1)$ est vraie, autrement dit il faut établir que $2 \le v_{n+1} \le v_{n+2} \le 8$.

D'après l'hypothèse de récurrence :

$$2 \leqslant v_n \leqslant v_{n+1} \leqslant 8.$$

Or f est strictement croissante sur [0; 8], d'après les questions précédentes donc :

$$f(2) \le f(v_n) \le f(v_{n+1} \le f(8))$$
.

Autrement dit:

$$2,6 \le v_{n+1} \le v_{n+2} \le 8.$$

Comme de plus $2 \le 2,6$ on a bien :

$$\leq v_{n+1} \leq v_{n+2} \leq 8.$$

 $\mathcal{P}(n+1)$ est donc vraie.

* Conclusion.

Nous avons démontré par récurrence que

$$\forall n \in \mathbb{N}, \ 2 \leq v_n \leq 8.$$

3. D'après la question précédente, (v_n) est à la fois croissante et majorée donc

$$(v_n)_{n\in\mathbb{N}}$$
 est convergente.

4. (a) Il s'agit de démontrer une égalité : nous allons partir d'un membre pour arriver à l'autre.

Démontrons que -0.05(x-20)(x-8) = f(x) - 8.

$$-0.05(x-20)(x-8) = -0.05(x \times x + x \times (-8) + (-20) \times x + (-20) \times 8)$$

$$= -0.05(x^2 - 8x - 20x + 160)$$

$$= -0.05(x^2 - 28x + 160)$$

$$= -0.05 \times x^2 - 0.05 \times (-28)x - 0.05 \times 160$$

$$= -0.05x^2 + 1.4x - 8$$

$$= f(x) - 8$$

Ainsi

$$-0.05(x-20)(x-8) = f(x) - 8.$$

(b) Soit $n \in \mathbb{N}$.

D'après la question précédente

$$8 - f(v_n) = -0.05(v_n - 20)(8 - v_n).$$

Or, d'après les questions précédentes on a successivement :

$$2 \le v_n$$

$$2 - 20 \le v_n - 20$$

$$-0.05 \times (-18) \ge -0.05(v_n - 20)$$

$$0.9 \ge -0.05(v_n - 20)$$

donc

$$8 - f(v_n) \le 0.9(8 - v_n).$$

Finalement

$$\forall n \in \mathbb{N}, 8 - f(v_n) \le 0.9(8 - v_n).$$

- (c) Avec le résultat de la question précédente on démontre par récurrence que $\forall n \in \mathbb{N}, \, 8-v_n \leq 6 \times 0.9^n.$
- (d) Puisque -1 < 0.9 < 1,

$$0.9^n \xrightarrow[n \to +\infty]{} 0.$$

Puisque $0 \le 8 - v_n \le 6 \times 0.9^n$, on en déduit, d'après le théorème des gendarmes

$$8 - v_n \xrightarrow[n \to +\infty]{} 0.$$

Donc

$$v_n \xrightarrow[n \to +\infty]{} 8.$$