Courbe paramétrée.

I Généralités.

Définition.

Définition 1

Soient

- . I un intervalle de \mathbb{R} ,
- $k \in \mathbb{N}$
- $d \in \{2,3\},\$
- $\gamma: I \to \mathbb{R}^d$

Si γ est une application de classe C^k nous dirons que γ est une $\it courbe paramétrée$ de classe $C^k.$

 $\Gamma = \gamma(I)$ est appelé le support de γ .

Remarques.

- 1. Puisque I est intervalle (partie connexe de $\mathbb R$) Γ est connexe par continuité de γ .
- 2. Si I est un segment (donc un compact) alors Γ est compact.
- 3. Les courbes C^0 peuvent être très éloignées de l'idée usuelle de courbe (courbe de Peano).

Courbes paramétrées équivalentes.

Définition 2

Soient:

- . I et J deux intervalles de \mathbb{R} ,
- $k \in \mathbb{N}$
- $d \in \{2,3\},\$
- . $\gamma_0: I \to \mathbb{R}^d$ et $\gamma_1: J \to \mathbb{R}^d$ deux courbes paramétrées de classe C^k .

Nous dirons que γ_1 est un C^k -reparamétrage de γ_0 si et seulement si il existe un C^k -difféomorphisme $\theta: J \to I$ tel que : $\gamma_1 = \gamma_0 \circ \theta$.

Remarques.

- 1. Si γ_1 est un reparamétrage de γ_0 alors elles ont le même support : $\gamma_1(J) = \gamma_0(I)$.
- 2. Si deux courbes ont le même support elles ne sont pas nécessairement des reparamétrages l'une de l'autre.

Proposition 1

Pour $k \in \mathbb{N}$, la relation être « un C^k -reparamétrage » est une relation d'équivalence sur l'ensemble des courbes paramétrées de classe C^k à support dans \mathbb{R}^d .

Remarques.

- 1. Une classe d'équivalence pour cette relation est appelée une courbe géométrique de classe \mathbb{C}^k .
- 2. Toutes les courbes paramétrées d'une même courbe géométrique ont le même support. Mais la réciproque est fausse.
- 3.

Définition 3

Soient

- . I un intervalle de \mathbb{R} ,
- $d \in \{2,3\},\$
- . $\gamma:I\to\mathbb{R}^d$ une courbe paramétrée par la longueur d'arc (ou l'abscisse curviligne) de classe C^2 .

La courbure de γ en $s \in I$ est le nombre positif :

$$k(s) := \|\gamma''(s)\|.$$

II Première forme quadratique fondamentale.

Exercices.

Exercice 1

$$S = \{(x,y,z) \in \mathbb{R}^3 | x^2 - y^2 - z = 0\}.$$

- 1. Montrer que $f:(u,v)\mapsto \left(\frac{1}{2}(u+v),\frac{1}{2}(u-v),uv\right)$ est C^{∞} .
- 2. Montrez que f est une paramétrisation complète de S.
- 3. Montrer que la paramétrisation f est régulière.

Correction exercice 1

- 1. Ses composantes sont C^{∞} en tant que fonctions polynomiales, donc f l'est aussi.
- 2. Il faut établir que f est une bijection de \mathbb{R}^2 sur S.
- 3. Il faut vérifier que la différentielle f'(u,v) est de rang 2, c'est-à-dire que les vecteurs dérivés partiels sont linéairement indépendants.

$$f'_u(u,v) = \left(\frac{1}{2}, \frac{1}{2}, v\right)$$

$$f'_v(u,v) = \left(\frac{1}{2}, -\frac{1}{2}, u\right)$$

Donc $f'u \wedge f'_v = \left(\frac{1}{2}(u+v), \frac{1}{2}(v-u), -\frac{1}{2}\right) \neq 0$. Donc f est une paramétrisation régulière.

4.

$$q_{1(u,v)}(x,y) = \left(v^2 + \frac{1}{2}\right)x^2 + 2uvxy + \left(u^2 + \frac{1}{2}\right)y^2$$

Exercice 2

On note S l'image de l'ouvert $U=\mathbb{R}\times]0;+\infty[$ de \mathbb{R}^2 par $f:U\to\mathbb{R}^3,$ $(u,v)\mapsto (\mathrm{e}^-v\cos u,\mathrm{e}^{-v}\sin u,v).$

- 1. Montrez que f est une paramétrisation de classe C^{∞} et régulière de f.
- 2. Calculez en chaque point de S, la première forme quadratique fondamentale et des équation cartésiennes de la droite normale à S.

Correction exercice 2

- 1. Comme question 1 de l'exercice précédent.
- 2.

$$q_1(x,y) = e^{-2v}x^2 + (1 + e^{-2v})y^2$$

La normale au point $M \begin{pmatrix} e^{-v} \cos u \\ e^{-v} \sin u \end{pmatrix}$ est la droit D passant par M et de vecteur $\begin{pmatrix} \cos u \\ \end{pmatrix}$

directeur
$$\vec{n} = \frac{1}{\sqrt{1 + e^{-2v}}} \begin{pmatrix} \cos u \\ \sin u \\ e^{-v} \end{pmatrix}$$
.

Soit $P(x,y,z) \in \mathbb{R}^3$.

$$P \in D \Leftrightarrow \overrightarrow{MP} \wedge \overrightarrow{n} = \overrightarrow{0}$$

$$e^{-v} - \sin uz = (e^{-2v} - v)\sin u$$

$$P \in D \Leftrightarrow -e^{-v}x + \cos uz = (v - e^{-2v})\cos u .$$

$$\sin x \cos y = 0$$

III Repères Darboux-Ridocourt.

Il s'agit d'un repère orthonormé directe fonction du paramètre de la surface.

Théorème 1

Formules de Darboux. Donnent τ' , g' et n' en fonction de τ , g et n.

Démonstration 1

Soit $\psi: s \mapsto f(u(s), v(s))$ une reparamétrisation normale de la (I, ϕ) . ψ est de classe au moins C^2 .

- 1. $\tau(s) = \psi'(s)$ donc τ est de classe C^1 .
- 2. $n(s) = \frac{f'_u \wedge f'_v}{\|f'_v \wedge f'_v\|}$ et tut de classe C^1 donc n est de classe C^1 .
- 3. $g(s) = n(s) \wedge \tau(s)$ donc g est de classe C^1 .

 $\langle \tau, \tau \rangle = 1 \text{ donc } \langle \tau, \tau' \rangle = 0$. De même pour n et g.

 $\langle \tau, n \rangle = 0$ donc $\langle n', \tau \rangle = \langle \tau', n \rangle$ de même pour les autres.

La matrice est donc

$$A(s) = \begin{pmatrix} 0 & -\langle \tau', g \rangle & -\langle \tau', n \rangle \\ \langle \tau', g \rangle & 0 & -\langle n', g \rangle \\ \langle \tau', n \rangle & -\langle n', g \rangle & 0 \end{pmatrix}$$

En considérant les colonnes qui sont τ' , g' et s' on retrouve les formules de Darboux.

Théorème 2

Liens formules de Séret-Fresnet et formules de Darboux.

Démonstration 2

Par produit scalaire on obtient les coordonnées des différents vecteurs dans l'autre repère.

Seconde forme quadratique fondamentale.

Théorème 3

Démonstration 3

Pour le minimum et le maximum il faut passer par les vecteurs propres et donc faire une diagonalisation simultanée des deux formes quadratiques.

Exercices.

IV Sous variétés de \mathbb{R}^n .

Exercice 3

Soient V (resp. W) une sous-variété de \mathbb{R}^n (resp. \mathbb{R}^p) de dimension d (resp. e) et de classe C^k . Montrez de diverses manières que $V \times W$ est une sous-variété de $\mathbb{R}^n \times \mathbb{R}^p$.

Correction exercice 3

1. En utilisant une définition implicite.

Soient $a = (a_n, a_p) \in V \times W$ et U un voisinage ouvert de a dans $V \times W$.

Nous souhaitons faire apparaître une submersion pour cela nous allons « rassembler » deux submersions correspondant à V et W. Nous aurons donc besoin de deux ouverts l'un sur \mathbb{R}^n et l'autre sur \mathbb{R}^p .

U est un ouvert de $\mathbb{R}^n \times \mathbb{R}^p$ donc il existe deux ouverts U_n et U_p respectivement de \mathbb{R}^n et \mathbb{R}^p tels que : $U_n \times U_p \subset U$. De plus $U_n \times U_p$ est alors un ouvert de $\mathbb{R}^n \times \mathbb{R}^p$.

Puisque V est une sous-variété de \mathbb{R}^n de dimension d et de classe C^k , il existe C^k -une submersion $s_n: U_n \to \mathbb{R}^{n-d}$ telle que $U_n \cap V = s_n^{-1}(\{0\})$.

Puisque W est une sous-variété de \mathbb{R}^p de dimension e et de classe C^k , il existe C^k -une submersion $s_p: U_p \to \mathbb{R}^{p-e}$ telle que $U_p \cap W = s_p^{-1}(\{0\})$.

Considérons $s:U_n\times U_p\to\mathbb{R}^{n-d}\times\mathbb{R}^{p-e}$ telle que, en notant P_i la projection canonique du produit cartésien sur *i*-ième coordonnée, pour tout $(x,y)\in U_n\times U_p$,

$$s(x,y) = s(P_1[s_n(x)], \dots, P_{n-d}[s_n(x)], P_1[s_p(y)], \dots, P_{p-e}[s_p(y)]).$$

Vérifions que s est une C^k -submersion en a.

- (a) s est de classe C^k puisque les P_i , s_n et s_p le sont.
- (b) $s'(a) = (P_1[s'_n(a_n)], \dots, P_{n-d}[s'_n(a_n)], P_1[s'_p(a_p)], \dots, P_{p-e}[s'_p(a_p)])$. Puisque $s'_n(a_n)$ et $s'_p(a_p)$ sont surjectives s'(a) l'est aussi.

Donc s_n est une C^k -submersion en a.

Comme de plus

$$(U_n \times U_p) \cap (V \times W) = (U_n \cap V) \times (U_p \cap W) = s^{-1}(\{0\}),$$

nous avons finalement démontré que

 $V \times W$ est une sous-variété de dimension d+e et de classe C^k .

Exercice 4

La partie de \mathbb{R}^2 définie par l'équation y=|x| est-elle une sous-variété de \mathbb{R}^2 ? Même question avec l'équation $x^2-y^2=0$.

- 1. La courbe représentative de $f:x\mapsto |x|$ n'est pas une sous-variété sur $\mathbb R$ car cette fonction est continue mais pas dérivable en 0.
 - $x\mapsto |x|$ est une fonction C^∞ sur \mathbb{R}_+^* et sur \mathbb{R}_+^* donc \mathscr{C}_f est hormis en 0 la réunion de deux sous-variétés de \mathbb{R}^2 de dimension 1.
- 2.