ESA 2019.

Exercice 1.

(6 points)

QCM 1.

$$\frac{\left(e^{2}\right)^{4} \times \sqrt{e^{6}}}{e^{5} \times \sqrt{e^{12}}} = \frac{e^{2 \times 4} \times \left(e^{6}\right)^{\frac{1}{2}}}{e^{5} \times \left(e^{12}\right)^{\frac{1}{2}}}$$

$$= \frac{e^{8} \times e^{6 \times \frac{1}{2}}}{e^{5} \times e^{12 \times \frac{1}{2}}}$$

$$= \frac{e^{8} \times e^{3}}{e^{5} \times e^{6}}$$

$$= \frac{e^{8+3}}{e^{5+6}}$$

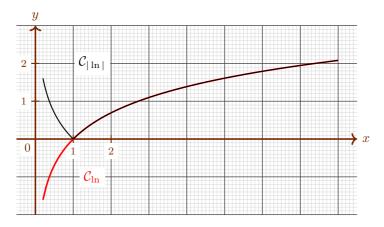
$$= \frac{e^{11}}{e^{11}}$$

$$= 1$$

La bonne réponse est B.

QCM 2.

En raisonnant graphiquement à partir de la courbe représentative de ln le résultat est immédiat.



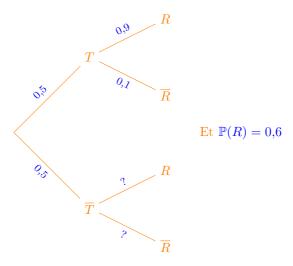
La bonne réponse est A.

QCM 3.

Notons R : « l'élève est reçu » et T : « l'élève à travailler » .

Calculons $\mathbb{P}_{\overline{T}}(R)$.

Un petit schéma pour voir clairement les données dont nous disposons.



 $\{T, \overline{T}\}$ constitue un système complet d'événements, donc, d'après la formule des probabilités totales :

$$\mathbb{P}(R) = \mathbb{P}(T \cap R) + \mathbb{P}(\overline{T} \cap R)$$

Puisque $\mathbb{P}(T)>0$ et $\mathbb{P}(\overline{T})>0$, d'après la formule des probabilités composées :

$$\mathbb{P}(R) = \mathbb{P}(T) \cdot \mathbb{P}_T(R) + \mathbb{P}(\overline{T}) \cdot \mathbb{P}_{\overline{T}}(R)$$
$$0.6 = 0.5 \times 0.9 + 0.5 \times \mathbb{P}_{\overline{T}}(R)$$

Ce qui équivaut successivement à :

$$\begin{aligned} 0.6 &= 0.45 + 0.5 \mathbb{P}_{\overline{T}}(R) \\ 0.6 - &0.45 = 0.45 - 0.45 + 0.5 \mathbb{P}_{\overline{T}}(R) \\ 0.15 &= \mathbb{P}_{\overline{T}}(R) \\ \frac{0.15}{0.5} &= \frac{0.5 \mathbb{P}_{\overline{T}}(R)}{0.5} \\ 0.3 &= \mathbb{P}_{\overline{T}}(R) \end{aligned}$$

$$\mathbb{P}_{\overline{T}}(R)) = 0.3.$$

La bonne réponse est A.

QCM 4.

$$z^{2} = \left(-\frac{1}{2}\right)^{2} + 2\left(-\frac{1}{2}\right)\left(i\frac{\sqrt{3}}{2}\right) + \left(i\frac{\sqrt{3}}{2}\right)^{2}$$
$$= \frac{1}{4} - i\frac{\sqrt{3}}{2} - \frac{3}{4}$$
$$= -\frac{1}{2} - i\frac{\sqrt{3}}{2}$$

Ce qui exclut les réponses C et D.

$$z^3=z^2z=\overline{z}z=|z|^2\in\mathbb{R}$$
donc $z^3\neq z^2.$ La réponse A est donc exclue.

La bonne réponse est B.

QCM 5.

Calculons $I = \int_{1}^{2} \frac{1}{x} (\ln x)^{3} dt$.

$$I = \int_{1}^{2} \ln'(x) (\ln x)^{2} dt$$
$$= \left[\frac{1}{3} (\ln x)^{3} \right]_{1}^{2}$$
$$= \frac{1}{3} (\ln 2)^{3} - \frac{1}{3} (\ln 1)^{3}$$

$$I = \frac{1}{3} \left(\ln 2 \right)^3.$$

La bonne réponse est C.

QCM 6.

Calculons λ .

D'après l'énoncé :

$$0.3 = \mathbb{P}(X \geqslant 20)$$

équivaut successivement à

$$0.3 = 1 - \mathbb{P}(X < 20)$$

$$0.3 = 1 - \mathbb{P}(X \le 20)$$

$$0.3 = 1 - \int_0^{20} \lambda e^{-\lambda t} dt$$

$$0.3 = 1 - \left[-e^{-\lambda t} \right]_0^{20}$$

$$0.3 = 1 + e^{-\lambda 20} - 1$$

$$0.3 = e^{-\lambda 20}$$

$$\ln(0.3) = \ln\left(e^{-\lambda 20}\right)$$

$$\ln(0.3) = -\lambda 20$$

$$\frac{\ln(0.3)}{-20} = \frac{-\lambda 20}{-20}$$

$$-\frac{\ln(0.3)}{20} = \lambda$$

$$\lambda = -\frac{\ln(0,3)}{20}.$$

La bonne réponse est C.

Exercice 2.

(6 points)

QCM 7

Étudions le signe de $f: x \mapsto (e^x - 1)(1 - x^2)$ sur \mathbb{R} .

Remarquons que, pour tout $x \in \mathbb{R}$, $f(x) = (e^x - 1)(1 - x)(1 + x)$.

x	$-\infty$		-1		0		1		$+\infty$
$e^x - 1$		_		_	0	+		+	
1-x		+		+		+	0	_	
1+x		_	0	+		+		+	
f		+	0	_	0	+	0	_	

L'ensemble des solutions de l'inéquation est $]-\infty;-1]\cup[0;1].$

La bonne réponse est A.

QCM 8

Déterminons f'.

Notons $u(x) = e^{2x} - 1$ et $v(x) = e^{2x} + 1$. Donc $u'(x) = 2e^{2x}$ et $v'(x) = 2e^{2x}$. Puisque

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Nous en déduisons pour tout $x \in \mathbb{R}$:

$$f'(x) = \frac{2e^{2x} \times (e^{2x} + 1) - (e^{2x} - 1) \times 2e^{2x}}{(e^{2x} + 1)^2}$$
$$= \frac{2e^{2x} \times [(e^{2x} + 1) - (e^{2x} - 1)]}{(e^{2x} + 1)^2}$$
$$= \frac{2e^{2x} \times [e^{2x} + 1 - e^{2x} + 1]}{(e^{2x} + 1)^2}$$

$$\forall x \in \mathbb{R}, \ \frac{4e^{2x}}{\left(e^{2x} + 1\right)^2}.$$

La bonne réponse est D.

QCM 9

Étudions la limite de f en $+\infty$.

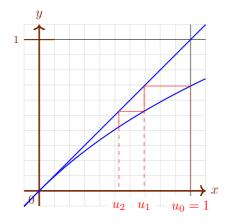
$$\lim_{x \to +\infty} \frac{x}{1-x} = -1 \text{ donc } \lim_{x \to +\infty} e^{\frac{x}{1-x}} = e^{-1}.$$

La bonne réponse est A.

QCM 10

Méthode rapide pour trouver la réponse.

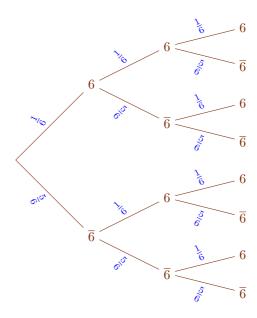
Avec une courbe représentative de $x \mapsto \ln(x+1)$ et la droite d'équation y=x nous pouvons de proche en proche dessiner les termes successifs de la suite.



La bonne réponse est B.

QCM 11

Méthode pour trouver rapidement la réponse. On représente la situation par un arbre pondéré.



Il y a 3 chemins avec exactement 2 fois le 6. D'après le principe multiplicatif la probabilité de l'un des ces chemins est $\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{5}{6}$. Donc la probabilité d'obtenir exactement 2 fois le 6 est : $3 \times \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{5}{6}$.

La bonne réponse est B.

Méthode calculatoire détaillée.

Notons x la variable aléatoire indiquant le nombre de 6 obtenus.

Calculons $\mathbb{P}(X=2)$.

- * Épreuve de Bernoulli.
 - Expérience : lancer un dé.
 - Succès : « Obtenir 6 ».
 - Probabilité de succès : $p = \frac{1}{6}$.
- * Schéma de Bernoulli.

L'épreuve de Bernoulli précédemment décrite est répétée à l'identique et de façon indépendante n=3 fois.

* Loi binomiale.

X compte le nombre de 6 parmi les 3 lancés, donc compte le nombre de succès donc : $X \hookrightarrow \mathcal{B}\left(3, \frac{1}{6}\right)$.

X suit une loi binomiale donc

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Done ici

$$\mathbb{P}(X = 2) = {3 \choose 2} \left(\frac{1}{6}\right)^2 \left(1 - \frac{1}{6}\right)^{3-2}$$
$$= 3 \times \frac{1}{6^2} \times \frac{5}{6}$$
$$= \frac{15}{6^3}$$

$$\mathbb{P}(X=2) = \frac{15}{6^3}.$$

QCM 12

Résolvons l'équation proposée dans \mathbb{R} .

$$x^{2} \ln 2 = x^{3} \ln 3 \Leftrightarrow x^{2} \ln(2) - x^{3} \ln(3) = 0$$

$$\Leftrightarrow x^{2} [\ln(2) - x \ln(3)] = 0$$

$$\Leftrightarrow x = 0 \quad \text{ou} \quad \ln(2) - x \ln(3) = 0$$

$$\Leftrightarrow x = 0 \quad \text{ou} \quad \ln(2) = x \ln(3)$$

$$\Leftrightarrow x = 0 \quad \text{ou} \quad \frac{\ln(2)}{\ln(3)} = x$$

La bonne réponse est B.

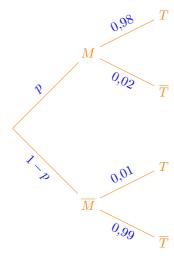
Exercice 3.

(8 points)

Partie A.

1. Calculons $\mathbb{P}(T)$.

Schématisons la situation.



Les événements M et \overline{M} constituent un système complet d'événements donc, d'après la formule des probabilités totales :

$$\mathbb{P}(T) = \mathbb{P}(M \cap T) + \mathbb{P}(\overline{M} \cap T)$$

 $\mathbb{P}(M)$ et $\mathbb{P}(\overline{M})$ d'après le contexte sont non nuls, donc d'après la formule des probabilités composées :

$$\mathbb{P}(T) = \mathbb{P}(M) \cdot \mathbb{P}_M(T) + \mathbb{P}(\overline{M}) \cdot \mathbb{P}_{\overline{M}}(T)$$
$$= p \times 0.98 + (1 - p) \times 0.01$$

$$\mathbb{P}(T) = 0.97p + 0.01.$$

2. p étant une proportion nous avons bien $p \in [0; 1]$.

Déterminons $\mathbb{P}_T(M)$.

Par définition de la probabilité conditionnelle :

$$\mathbb{P}_T(M) = \frac{\mathbb{P}(M \cap T)}{\mathbb{P}(T)}$$

D'après la question précédente :

$$\mathbb{P}_T(M) = \frac{\mathbb{P}(M \cap T)}{0.97p + 0.01}$$

D'après la formule des probabilités conditionnelles :

$$\begin{split} \mathbb{P}_T(M) &= \frac{\mathbb{P}(M) \cdot \mathbb{P}_M(T)}{0,097 + 0,01} \\ &= \frac{p \times 0,98}{0,097p + 0,01} \\ &= \frac{100 \times 0,98p}{100 \times (0,097p + 0,01)} \end{split}$$

$$\forall p \in [0; 1], \, \mathbb{P}_M(T) = \frac{98p}{97p+1}.$$

3. Étudions les variations de f.

f est de la forme $\frac{u}{v}$ avec u(x) = 98x et v(x) = 97x + 1. Puisque u et v sont dérivables et puisque v ne s'annule pas sur [0;1], f est dérivable sur [0;1] et

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}.$$

Comme u'(x) = 98 et v'(x) = 97, pour tout $x \in [0; 1]$:

$$f'(x) = \frac{98 \times (97x + 1) - 98x \times 97}{(97x + 1)^2}$$
$$= \frac{98 \times 97x + 98 - 98 \times 97x}{(97x + 1)^2}$$
$$= \frac{98}{(97x + 1)^2}$$

Comme f'(x) > 0 pour tout $x \in [0; 1]$:

f est strictement croissante sur [0;1].

4. Résolvons dans [0;1] l'inéquation $\mathbb{P}_T(M) \geq 0.95$.

$$\mathbb{P}_{T}(M) \geqslant 0.95 \Leftrightarrow \frac{98p}{97p+1} \geqslant \frac{95}{100}$$

$$\Leftrightarrow 98p \times 100 \geqslant (97p+1) \times 95 \quad \text{car } 97p+1 > 0$$

$$\Leftrightarrow 9800p \geqslant 95 \times 97p + 95$$

$$\frac{\times 97}{485}$$

$$\frac{97}{485}$$

$$\frac{873}{9215}$$

$$\mathbb{P}_T(M) \geqslant 0.95 \Leftrightarrow 9800p \geqslant 9215p + 95$$

 $\Leftrightarrow 9800p - 9215p \geqslant 95$
 $\Leftrightarrow (9800 - 9215)p \geqslant 95$

$$\frac{-\,\frac{9\;8\;0\;0}{9\;2\;1\;5}}{5\;8\;5}$$

$$\mathbb{P}_T(M) \geqslant 0.95 \Leftrightarrow 585p \geqslant 95$$

 $\Leftrightarrow p \geqslant \frac{95}{585}$

Une rapide décomposition en facteurs premiers conduit à : $95 = 5 \times 19$ et $585 = 3^2 \times 5 \times 13$. Par conséquent $\frac{95}{585} = \frac{19}{3^2 \times 13} = \frac{19}{117}$ et cette dernière fraction est une fraction irréductible.

Le test est fiable pour une proportion p supérieure ou égale à $\frac{19}{117}$.

Partie B.

- 1. Justifions que X suit une loi binomiale.
 - * Épreuve de Bernoulli.
 - Expérience : choisir un individu au hasard.
 - Succès : « l'individu est malade ».
 - Probabilité de succès : p = 0.15.
 - * Schéma de Bernoulli.

L'épreuve de Bernoulli précédemment décrite est répétée à l'identique et de façon indépendante n=100 fois.

* Loi binomiale.

X compte le nombre de personnes atteintes par le virus parmi le 100 individus choisis, donc compte le nombre de succès donc :

$$X \hookrightarrow \mathcal{B}(100; 0.15).$$

2. Sans calculatrice nous ne pourront pas utiliser la fonction de répartition de la loi binomiale. Nous pourrions nous contenter de l'intervalle de fluctuation approché usuel : $\left[f-\frac{1}{\sqrt{n}};f+\frac{1}{\sqrt{n}}\right]$. Cependant l'aide au calcul nous incite plutôt à utiliser la loi normale.

D'après le théorème de Moivre-Laplace une suite de variable aléatoire de loi binomiale converge en loi vers une variable de loi normale. Nous allons utiliser l'intervalle de fluctuation correspondant.

On a : n = 100, p = 0.15.

On vérifie : $n \ge 30$, $np \ge 5$ et $n(p-1) \ge 5$. Donc la fréquence observée du caractère dans l'échantillon appartient avec une probabilité d'environ 0,95 à l'intervalle de fluctuation asymptotique

$$p - 1.96 \frac{\sqrt{p(1-p)}}{\sqrt{n}}; p + 1.96 \frac{\sqrt{p(1-p)}}{\sqrt{n}}$$
.

Or:

$$p - 1,96 \frac{\sqrt{p(1-p)}}{\sqrt{n}} = 0,15 - 1,96 \frac{\sqrt{0,15(1-0,15)}}{\sqrt{100}}$$
$$\approx 0,15 - \frac{0,70}{10}$$
$$\approx 0.08$$

et

$$p+1.96\frac{\sqrt{p(1-p)}}{\sqrt{n}}\approx 0.22$$

et aussi $f = \frac{20}{100} = 0.2$, donc $f \in [0.08; 0.22]$.

L'échantillon ne permet de remettre en cause la valeur de p au seuil de 95 %.

Partie C.

Déterminons un intervalle de confiance.

La fréquence de personne atteintes est f = 0,2.

 $n = 100 \ge 20, f \ge 0.2 \text{ et } f \le 0.8.$

Donc un intervalle de confiance au seuil de 95 % est

$$\left[f - \frac{1}{\sqrt{n}}; f + \frac{1}{\sqrt{n}}\right].$$

Or:

$$f - \frac{1}{\sqrt{n}} = 0.2 - \frac{1}{\sqrt{100}}$$
$$= 0.2 - 0.1$$
$$= 0.1$$

et

$$f - \frac{1}{\sqrt{n}} = 0.3$$

donc

un intervalle de confiance de p au seuil de 95 % est : [0,1;0,3].

Partie D.

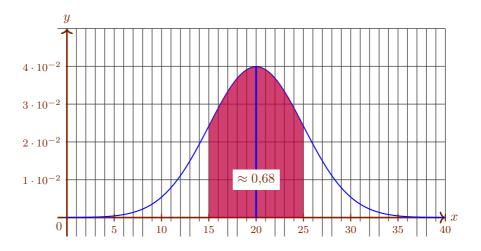
1.

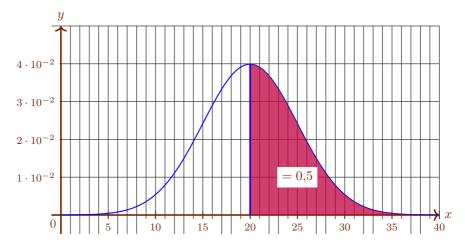
$$\begin{split} \mathbb{P}(15 < Y < 25) &= \mathbb{P}(Y \in]15,\!25[) \\ &= \mathbb{P}(Y \in]20 - 5,\!20 + 5[) \\ &= \mathbb{P}(Y \in]\mu - \sigma,\!\mu + \sigma[) \end{split}$$

Donc d'après le cours :

$$\mathbb{P}(15 < Y < 25) \approx 0.68.$$

2. Calculons $\mathbb{P}(Y > 15)$.





Puisque $\{15 < Y \leqslant 20\}$ et $\{20 < Y\}$ sont disjoints :

$$\begin{split} \mathbb{P}(Y > 15) &= \mathbb{P}(\{15 < Y \leqslant 20\} \cup \{20 < Y\}) \\ &= \mathbb{P}(15 < Y \leqslant 20) + \mathbb{P}(20 < Y) \\ &= \frac{1}{2}\mathbb{P}(15 < Y < 25) + 0.5 \\ &\approx \frac{1}{2} \times 0.68 + 0.5 \end{split}$$

$$P(Y > 15) \approx 0.84.$$

3. Déterminons a.

D'après le cours, pour la variable aléatoire $\frac{Y-20}{5}$ suivant la loi normale centrée réduite

$$\mathbb{P}\left(-1,96 < \frac{Y - 20}{5} < 1,96\right) \approx 1 - 0,05$$

Donc par symétrie de la loi normale :

$$\mathbb{P}\left(\frac{Y - 20}{5} < 1,96\right) \approx 1 - 0,025$$

$$\mathbb{P}\left(\frac{Y - 20}{5} < 1,96\right) \approx 0,975$$

$$\mathbb{P}\left(Y < 5 \times 1,96 + 20\right) \approx 0,975$$

$$\mathbb{P}\left(Y < 29,8\right) \approx 0,975$$

 $a \approx 29.8$, autrement dit la probabilité que le temps d'incubation de la maladie soit de 29.8 heures est 0,975.