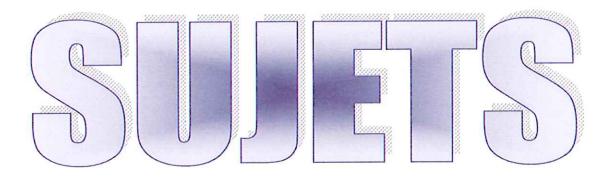


MINISTERE DE LA DEFENSE

ANNALES


du concours d'admission d'élèves officiers

médecins et pharmaciens

à l'École de Santé des Armées

Niveau Baccalauréat

CONCOURS 2014 D'ADMISSION

À L'ECOLE DE SANTE DES ARMEES

CATEGORIE BACCALAUREAT

Section: Médecine - Pharmacie

EPREUVES ECRITES D'ADMISSIBILITE COMPOSITION FRANÇAISE

Durée: 1 heure 30 minutes

Coefficient 3

Mercredi 16 Avril 2014

Avertissements:

- L'utilisation d'encre rouge est interdite.
- Il sera tenu compte de la qualité de la présentation des copies et de l'orthographe
- Vérifiez que l'énoncé comporte 2 pages numérotées de 1 à 2.

Mémoire individuelle ou collective, oublis de la mémoire et mémoire contre l'oubli, mémoires plurielles et divergentes, la mémoire était sur la sellette au congrès de l'Académie universelle des cultures. Historiens mais aussi philosophes, neurobiologistes, psychanalystes, anthropologues, ethnolinguistes, sociologues ou juristes ont été invités à s'exprimer sur le thème la mémoire.

Le neurobiologiste Jean-Pierre Changeux a rappelé que les traces du passé qu'enregistre notre cerveau sont faites de souvenirs mais aussi de distorsions, de sélection, voire de désinformation. Comment alors s'y référer puisque sa fiabilité est plus que douteuse? Paul Ricœur a défini la mémoire comme « une mise en intrigue du passé » qui implique inévitablement un tri, avec menaces d'intrusion de l'imaginaire et du virtuel. Il incombe alors aux historiens un « travail accablant », une ambition de fidélité au passé qui constitue le rapport fondamental de la mémoire à la vérité. Pour ce philosophe, la mémoire ne peut se substituer à l'histoire. L'historien se doit d'associer aux témoignages d'autres sources : archives, vestiges, statistiques...

C'est en cela que la mémoire historienne, dans sa dimension éthique, peut réunir « le deuil de ce qui n'est plus et la dette de ce qui fut ».

Aujourd'hui, la mémoire collective témoigne des représentations que les hommes se font de leur passé. Entre mythe et réalité, elle est d'ailleurs l'objet de constantes modifications comme en témoigne l'apparition incessante de nouveaux « lieux de mémoire » [...] L'histoire ne dit pas toujours la même chose que la mémoire. La première a ses silences, la seconde ses oublis. Partout dans le monde, a constaté l'historienne Michelle Perrot, les femmes, ces « grandes muettes de l'histoire » commencent à faire l'objet d'une relecture du passé, à travers les travaux sur le « genre ». Le génocide arménien, toujours passé sous silence, celui des Kurdes, l'extermination des peuples amérindiens, l'esclavage et la colonisation, l'apartheid en Afrique du Sud et les traces qu'il laisse aujourd'hui (analysé par le nigérian Wole Soyinka, prix Nobel de littérature) ont aussi été évoqués.

La mémoire, surtout lorsqu'elle est douloureuse, s'avère souvent difficile à transmettre. Il faut que la société soit prête à entendre. Peut-on, à travers les paroles, communiquer la souffrance, les états d'esprit, les sentiments ? [...]

Même si le devoir de mémoire s'impose contre tous les négationnismes, l'oubli est parfois nécessaire : il est impossible de se souvenir de tout. Comme l'a affirmé Paul Ricœur, « oublier, c'est aussi alléger sa dette ».

Colloque « Mémoire et Histoire », organisé par l'Académie universelle des cultures, 25 et 26 mars 2010 à l'Unesco et à la Sorbonne.

Discussion : « L'histoire ne dit pas toujours la même chose que la mémoire. La première a ses silences, la seconde ses oublis ».

A l'aide de vos connaissances littéraires, historiques ou personnelles, vous discuterez cette affirmation.

CONCOURS 2014 D'ADMISSION A L'ECOLE DE SANTE DES ARMEES

CATEGORIE BACCALAUREAT

Sections: Médecine – Pharmacie

EPREUVES ECRITES D'ADMISSIBILITE PHYSIQUE-CHIMIE

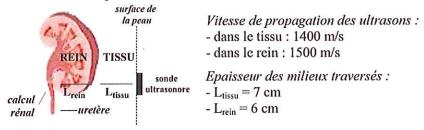
Durée: 1 heure 30 minutes

Durée conseillée pour les exercices de physique (20 pts/40) : 45 min Durée conseillée pour les exercices de chimie (20 pts/40) : 45 min

Coefficient: 3

Mercredi 16 Avril 2014

Avertissements


- L'utilisation d'encre rouge est interdite
- L'utilisation de calculatrices, règles à calculs, formulaires, papier millimétré est interdite
- Vérifiez que ce fascicule comporte 13 pages numérotées de 1 à 13, page de garde comprise
- Il sera tenu compte de la qualité de la présentation de la copie et de l'orthographe
- En ce qui concerne les Questions à Choix Multiples :
- 1) Reportez vos réponses sur la grille de QCM sans les justifier
- 2) Pour chacun des QCM, il existe au minimum une bonne réponse
- 3) Une réponse à un item sera considérée comme incorrecte si l'item a été coché alors qu'il ne devait pas l'être ou si l'item n'a pas été coché alors qu'il devait l'être
- 4) Des points seront retirés pour chaque item incorrect ; toutefois, la note obtenue à un QCM ne descendra pas en dessous de zéro (pas de report de points négatifs entre QCM)

DEBUT DE L'EPREUVE DE PHYSIQUE

Les crises de coliques néphrétiques sont dues à la formation de concrétions solides au niveau des reins, appelées calculs rénaux. A travers les quatre exercices indépendants suivants, nous vous présentons un mode de détection, de traitement et d'élimination des calculs rénaux. Les phénomènes présentés et leur réalité médicale ont été simplifiés afin d'en réaliser une étude adaptée au programme de Terminale S.

PHYSIQUE : EXERCICE 1 : (5 points) (durée conseillée 10 min)

La détection des calculs rénaux peut être réalisée par échographie. Dans cet exercice, on utilise une sonde à ultrasons placée à l'horizontale d'un calcul rénal bouchant l'entrée du canal de l'uretère.

QCM nº1: (1 point)

Cochez la(les) proposition(s) correcte(s):

- A- La propagation des ultrasons se fait avec un transport d'énergie
- B- La propagation des ultrasons se fait avec un transport de matière
- C- La longueur d'onde est la distance parcourue par l'onde au bout d'une seconde
- D- La longueur d'onde est la distance minimale séparant deux points qui vibrent en phase
- E- Si la sonde est en mouvement par rapport au calcul, la fréquence des ondes ultrasonores reçues par le calcul diffère de la fréquence des ondes ultrasonores émises par la sonde

QCM n°2: (2 points)

Soit t_e l'instant d'émission de l'onde incidente par la sonde et t_r l'instant de réception par la sonde de l'onde réfléchie sur le calcul rénal. Quelle est la valeur de la durée ∆t séparant ces deux instants ?

$$A-\Delta t = 20 \mu s$$

B-
$$\Delta t = 90 \, \mu s$$

C-
$$\Delta t = 180 \,\mu s$$

D-
$$\Delta t = 9 \text{ ms}$$

E-
$$\Delta t = 18 \text{ ms}$$

QCM nº3: (1 point)

La longueur d'onde des ultrasons dans le rein est de 5.10⁻⁴ m et le diamètre du calcul rénal est de 2 cm.

- A- La fréquence des ultrasons dans le rein est de 3 MHz
- B- La fréquence des ultrasons dans le rein diffère de celle dans le tissu
- C- La longueur d'onde des ultrasons dans le rein diffère de celle dans le tissu
- D- La diffraction des ondes ultrasonores par le calcul augmente si sa taille augmente
- E- La diffraction des ondes ultrasonores par le calcul augmente si la longueur d'onde augmente

QCM nº4: (1 point)

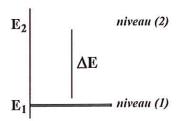
Les ondes émises par la sonde ont un niveau d'intensité sonore L_i = 100 dB. Que vaut l'intensité sonore I_i correspondante? On donne: I₀ = seuil d'audibilité de l'oreille humaine = 10⁻¹² W.m⁻²

A-
$$I_i = 10^2 \text{ W.m}^{-2}$$

$$B_{-}I_{i} = 10^{-2} \text{ W.m}^{-2}$$

B-
$$I_i = 10^{-2} \text{ W.m}^{-2}$$

C- $I_i = 10^{-22} \text{ W.m}^{-2}$


D-
$$I_i = 10^{-88} \text{ W.m}^{-2}$$

PHYSIQUE : EXERCICE 2 : (5 points) (durée conseillée 15 min)

L'utéroscopie laser est une technique utilisée pour détruire les calculs rénaux. Pour cela, l'urologue introduit par les voies naturelles un endoscope ; une fois parvenu au contact des calculs, il y fait glisser une fibre laser dont l'énergie permettra, par cavitation, de les pulvériser en fines particules qui seront éliminées dans les urines. Dans cet exercice, le laser utilisé est un laser « Yag-Holmium » pulsé, dont l'avantage est de fournir un faisceau laser très peu absorbé par les tissus environnants.

QCM n°5: (1 point)

On note (1) et (2) les niveaux impliqués lors de l'émission induite ; on note E_1 et E_2 l'énergie de ces niveaux (avec $E_1 < E_2$) et ΔE l'écart énergétique entre ces deux niveaux.

- A- L'émission induite est réalisée du niveau (2) vers le niveau (1)
- B- L'émission induite peut être déclenchée par deux photons incidents, chacun d'énergie ΔΕ/2
- C- Les photons inducteur et induit se déplacent dans la même direction et dans le même sens
- D- Les photons inducteur et induit sont en phase l'un par rapport à l'autre
- E- Qu'ils soient à émission pulsée ou continue, la lumière laser présente une importante concentration spatiale et temporelle de l'énergie

OCM n°6: (2 points)

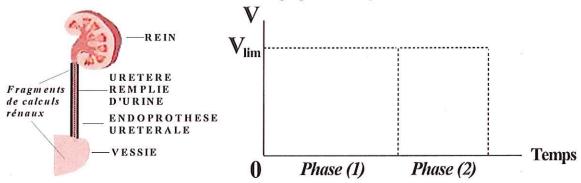
La lumière émise par le laser est dans le domaine Infra-Rouge avec une longueur d'onde de 2000 nm. On donne : $h \approx 6.10^{-34} \text{ J.s}$; $c = 3.10^8 \text{ m.s}^{-1}$; $e = 1,6.10^{-19} \text{ C}$

- A- Il est pertinent de prendre en compte la diffraction de la lumière émise par le laser utilisé quand la dimension du calcul traité avoisine les 2 cm
- B- Une absorption Infra-Rouge provoque une transition entre niveaux d'énergie électroniques
- C- Dans le système international d'unités, la quantité de mouvement s'exprime en kg.m.s
- D- La quantité de mouvement des photons laser est environ de 3.10⁻²⁸ unités SI
- E- L'énergie d'un photon laser est approximativement de 9.10⁻²⁰ J

QCM nº7: (1 point)

On considère que le calcul rénal traité pèse 4 g et que 20 % de sa masse est composée d'ions calcium (Ca^{2+}) de masse molaire $M \approx 40 \text{ g.mol}^{-1}$. On donne : $N_A \approx 6.10^{23}$ (en unité internationale). Quel est approximativement le nombre d'ions calcium Ca^{2+} contenus dans ce calcul rénal ?

- A- Environ 106 ions Ca2+
- **B-** Environ 10⁹ ions Ca²⁺
- C- Environ 1013 ions Ca2+
- **D-** Environ 10^{22} ions Ca^{2+}
- E- Environ 10³¹ ions Ca²⁺

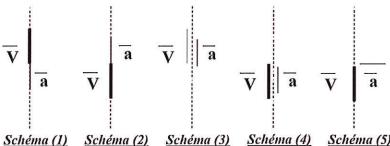

QCM n°8: (1 point)

Avant que le phénomène de cavitation n'apparaisse au sein du calcul rénal, la température du calcul augmente d'une quantité ΔT ; on note m la masse du calcul et c_m sa capacité thermique massique.

- A- Dans le système international, l'unité de c_m est J.°C⁻¹.kg -1
- **B-** Dans le cas du calcul rénal, ΔU et ΔT sont reliées entre elles par : $\Delta U = \text{m.c.}_m \Delta T$
- C- L'énergie potentielle de pesanteur du calcul est une composante de son énergie interne
- D- La variation d'énergie interne est nulle tant que le calcul reste immobile
- E- La variation d'énergie interne d'un système qui reçoit de la chaleur (Q) et qui fournit un travail (W) est donnée par : $\Delta U = Q W$

PHYSIQUE: EXERCICE 3: (5 points) (durée conseillée 10 min)

Certaines fois, l'urologue doit mettre en place une endoprothèse urétérale : c'est un tube introduit dans l'uretère facilitant le passage des fragments du calcul entre le rein et la vessie. Dans cet exercice, on s'intéresse à la chute verticale d'un fragment de masse m du calcul, le long de l'endoprothèse remplie d'urine. Durant la chute, le fragment n'est soumis qu'à son poids P et à une force de frottements F_f de norme $F_f = k.V$ où V est la vitesse de chute et k est une constante. Le graphique ci-dessous retrace l'évolution de la vitesse de chute au cours du temps qui se décompose en deux phases notées (1) et (2).


QCM n°9: (1 point)

Durant la phase (1), le fragment de calcul présente un mouvement :

- A- Rectiligne et accéléré de façon non uniforme
- B- Rectiligne et décéléré de façon non uniforme
- C- Rectiligne et accéléré de façon uniforme
- D- Rectiligne et décéléré de façon uniforme
- E- Rectiligne et uniforme

QCM n°10 : (1 point)

Parmi les schémas suivants, quel est celui donnant, pour la phase (1) du mouvement de chute, une représentation correcte des vecteurs vitesse et accélération du fragment en chute?

- A- Schéma (1)
- B- Schéma (2)
- C- Schéma (3)
- D- Schéma (4)
- E- Schéma (5)

QCM nº11 : (1 point)

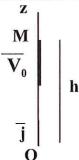
Durant la phase (1), le fragment de calcul:

- A- Voit son énergie mécanique diminuer
- B- Voit son énergie mécanique rester constante
- C- Voit son énergie potentielle de pesanteur diminuer
- D- Voit son énergie cinétique augmenter
- E- Voit son énergie cinétique varier plus que son énergie potentielle de pesanteur

QCM n°12 : (1 point)

Dans l'expression de la force de frottements $F_f = k.V$, l'unité du coefficient k est kg.s⁻¹. Dans la liste des propositions ci-dessous, identifier par analyse dimensionnelle, l'expression de la vitesse limite V_{lim} de chute du fragment de calcul. On note g la valeur de l'accélération de la pesanteur.

- **A.** $V_{lim} = (m.g) k$
- **B-** $V_{lim} = k/(mg)$
- C- $V_{lim} = (m.k)/g$
- **D-** $V_{lim} = (m.g)/k$
- $E-V_{lim} = k.m.g$


QCM nº13 : (1 point)

Durant la phase (2), si H est la distance parcourue par le fragment de calcul avec la vitesse limite V_{lim} (présentée QCM 12), quelle est l'expression du travail de la force de frottement pour ce déplacement ?

- \mathbf{A} $\mathbf{W} = -\mathbf{k} \cdot \mathbf{V}_{lim} \cdot \mathbf{H}$
- **B-** W = + k. V_{lim} .H
- C- $W = -k.V_{lim}/H$
- **D-** $W = + k.V_{lim}/H$
- $\mathbf{E} \mathbf{W} = \mathbf{0}$

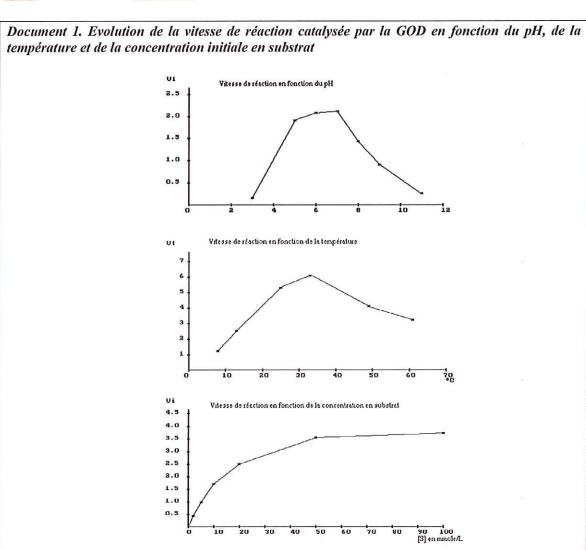
PHYSIQUE : EXERCICE 4 : (5 points) (durée conseillée 10 min)

Une fois parvenus jusqu'à la vessie, les fragments du calcul rénal sont éliminés par la voie urinaire. On s'intéresse à un fragment de masse m expulsé du système urinaire d'une hauteur h avec une vitesse initiale V_0 orientée verticalement vers le bas. Durant sa chute dans le champ de pesanteur, on suppose qu'il n'est soumis qu'à l'action de son poids. On note j le vecteur unitaire du repère Oz associé au référentiel d'étude supposé être galiléen et g la valeur de l'accélération de la pesanteur.

- 1) Quelle est l'expression vectorielle du poids en fonction de m, g et du vecteur unitaire j?
- 2) Enoncer textuellement la deuxième loi de Newton puis en donner (sans la démontrer) une expression mathématique faisant intervenir le vecteur accélération du fragment.
- 3) Avec pour origine des temps l'instant d'expulsion et pour origine des positions le point O :
 - 3-a) Etablir l'expression de la coordonnée az du vecteur accélération au cours du temps.
 - 3-b) Etablir l'expression de la coordonnée V, du vecteur vitesse au cours du temps.
 - 3-c) Etablir l'expression de la coordonnée z du vecteur position au cours du temps.

FIN DE L'EPREUVE DE PHYSIQUE

DEBUT DE L'EPREUVE DE CHIMIE


CHIMIE: EXERCICE 1: (1 point)

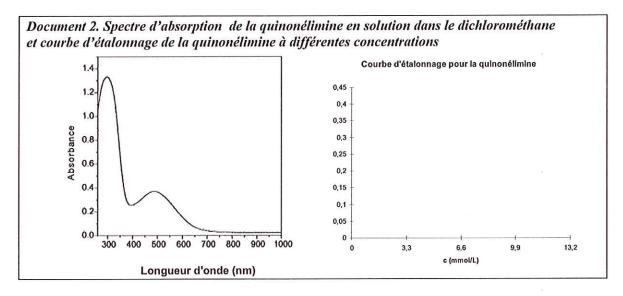
Chez les patients diabétiques, il est important de contrôler la glycémie : il s'agit de la concentration sanguine en glucose.

Les petits lecteurs de glycémie utilisent une enzyme appelée Glucose Oxydase (GOD) qui catalyse la réaction suivante :

Glucose +
$$O_2$$
 + H_2O — GOD Acide gluconique + H_2O_2

QCM n°14:

A l'aide de l'énoncé et du document 1, choisissez la (ou les) proposition(s) exacte(s) :


- A- La GOD est un catalyseur biologique
- B- La GOD diminue la durée de réaction et n'apparait pas dans le bilan
- C- Le pH, la concentration en substrat et la température sont des facteurs cinétiques
- D- Plus la concentration initiale en substrat est grande, plus la durée de réaction est faible
- E- Plus le pH de la réaction est élevé, plus la durée de réaction est faible

CHIMIE: EXERCICE 2: (1 point)

Pour effectuer le dosage du glucose dans le sang on utilise une réaction annexe qui va transformer le peroxyde d'hydrogène (H_2O_2) formé lors de la réaction principale :

<u>Réaction principale</u> Glucose $+ O_2 + H_2O$ — GOD Acide gluconique $+ H_2O_2$

Réaction annexe H₂O₂ ----- Teinture de quinonélimine + H₂O

Document 3. Détermination de la couleur perçue à partir de la longueur d'onde du maximum d'absorption et étendue du spectre UV-visible-I.R.

Longueur d'onde du maximum d'absorption (nm)	>660	620	600	580	560	530	500	480	450	420	400
Couleur observée	Bleu- vert	Cyan	Bleu	Bleu- violet	Violet	Magenta	Rouge	Orange	Jaune- orangé	Jaune	Jaune- vert

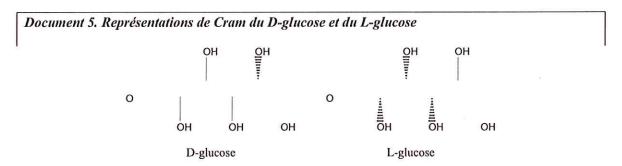
$$\frac{\text{UV} \quad \text{Visible}}{x} \quad \frac{\text{I.R.}}{x} \qquad \lambda \text{ (nm)}$$

$$400 \quad 750$$

Document 4. Valeurs normales de la glycémie

Entre 3,5 et 6,1 mmol/L à jeun

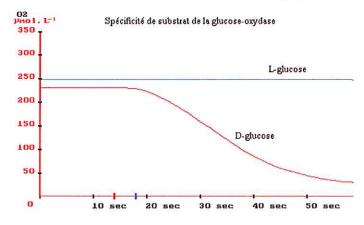
Inférieure à 7,8 mmol/L 2h après le début d'un repas


QCM n°15 :

A l'aide de l'énoncé et des documents 2, 3 et 4, choisissez la (ou les) proposition(s) exacte(s) :

- A- La teinture de quinonélimine est une solution colorée
- B- La teinture de quinonélimine est une solution de couleur verte
- C- L'intensité de la couleur obtenue augmente avec la concentration en glucose
- D- Le suivi de cette réaction peut s'effectuer par spectrophotométrie à 300 nm
- E- Chez un patient à jeun on détecte une absorbance à 0,10 caractérisant alors une hyperglycémie

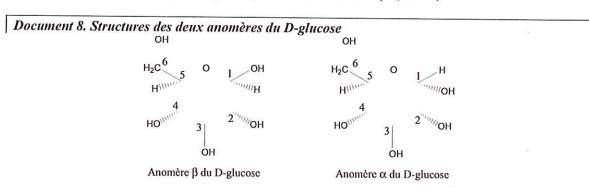
CHIMIE: EXERCICE 3: (2 points)


La Glucose Oxydase (GOD) a été mise en présence de deux substrats potentiels, le D-glucose et le L-glucose (document 5) afin d'étudier sa spécificité vis-à-vis de l'un ou de l'autre.

Document 6. Définition de deux épimères

Deux épimères sont deux stéréoisomères de configuration qui ne différent que par la configuration d'un seul carbone asymétrique. Par exemple, le D-glucose et le D-mannose ci-dessous sont épimères l'un de l'autre car ils ne différent que par la configuration du carbone n° 2 :

Document 7. Evolution de la consommation d'O2 en fonction du temps pour le L et le D-glucose

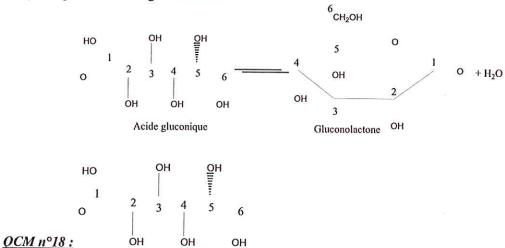

QCM nº16:

A l'aide de l'énoncé et des documents 5, 6, 7, choisissez la (ou les) proposition(s) exacte(s) :

- A- Le L-glucose et le D-glucose sont épimères
- B- Le L-glucose ne semble pas être reconnu par la GOD
- C- Le temps de demi-réaction est égal à la moitié de la durée de la réaction
- **D-** Pour le D-glucose, on peut estimer que $t_{1/2} = 35$ secondes environ
- E- Le L-glucose et le D-glucose sont deux stéréoisomères de configuration qui sont images l'un de l'autre dans un miroir plan

CHIMIE: EXERCICE 4: (2 points)

Le glucose est présent sous deux formes cycliques en équilibre appelées anomères (36,4 % sous forme de β -D-glucose et 63,6 % sous forme d' α -D-glucose). L'enzyme Glucose Oxydase possède une spécificité particulière puisqu'elle agit uniquement sur l'anomère β . (Doc. 8)

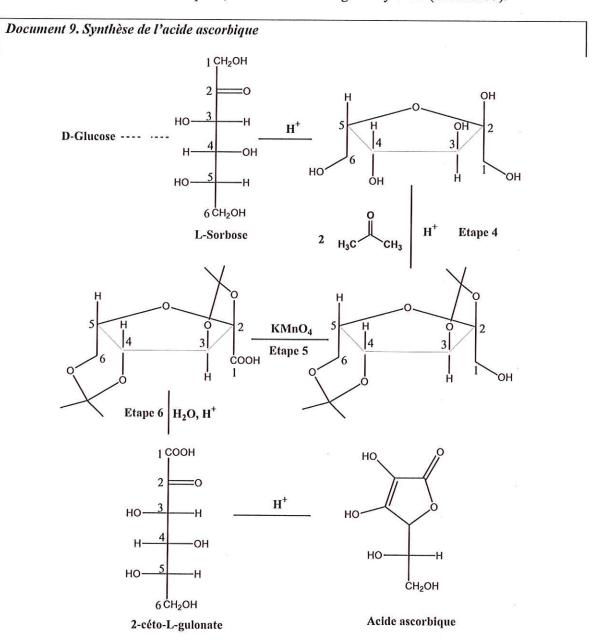

QCM nº17:

A l'aide de l'énoncé et du document 8, choisissez la (ou les) proposition(s) exacte(s) :

- A- L'anomère β est caractérisé par des substituants en positions 1 et 5 situés du même côté du plan moyen du cycle
- B- La comparaison des spectres I.R. de chacun des anomères permettrait de les différencier
- C- En RMN, la multiplicité du signal correspondant à l'hydrogène du OH porté par l'atome de carbone n° 6 est de type triplet
- D- En RMN, on peut considérer que les protons portés par le carbone 6 sont équivalents
- E- Les deux anomères ne diffèrent que par la configuration d'un seul carbone asymétrique

CHIMIE: EXERCICE 5: (2 points)

L'un des produits de la réaction catalysée par l'enzyme Glucose Oxydase est l'acide gluconique, qui se cyclise pour donner la gluconolactone :



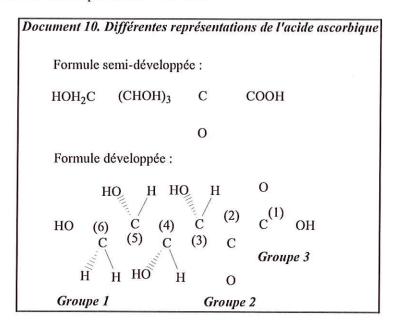
Choisissez la (ou les) proposition(s) exacte(s):

- A- Dans la gluconolactone, on remarque la présence d'un groupe ester
- B- Au cours de cette cyclisation, des atomes ou groupe d'atomes sont ôtés à l'acide gluconique sans qu'il ne gagne d'atomes
- C- La première étape du mécanisme réactionnel de la cyclisation peut être :
- D- La cyclisation s'explique par l'attraction électrostatique entre le site donneur porteur d'une charge positive et le site accepteur porteur d'une charge négative
- E- La réaction de cyclisation peut être classée dans la catégorie des réactions d'addition

CHIMIE: EXERCICE 6: (2 points)

A partir du D-glucose, il est possible de synthétiser l'acide ascorbique. On s'intéresse notamment aux étapes 4, 5 et 6 de cette stratégie de synthèse (document 9).

QCM n°19:


A l'aide de l'énoncé et du document 9, choisissez la (ou les) proposition(s) exacte(s) :

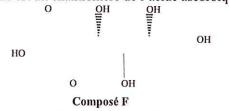
- A- On peut affirmer que la molécule de L-sorbose est polyfonctionnelle
- B- L'étape 5 du mécanisme consiste à transformer une fonction alcool en une fonction aldéhyde
- C- L'étape 4 est une étape de protection
- D- On peut déduire du document 9 que le réactif KMnO₄ est chimiosélectif
- E- L'étape 6 est une étape de déprotection

CHIMIE: EXERCICE 7: (2 points)

Le D-glucose que nous venons d'étudier est le précurseur de la synthèse industrielle de l'acide ascorbique, communément appelé « vitamine C ».

De nombreux fruits et légumes frais en contiennent, et il entre également dans la composition de nombreux médicaments et compléments alimentaires.

QCM n°20:


A l'aide de l'énoncé et du document 10, choisissez la (ou les) proposition(s) exacte(s) :

- A- Le groupe 1 est une fonction alcool
- B- Le groupe 2 est une fonction cétone
- C- Le groupe 3 est une fonction aldéhyde
- D- Le groupe 1 est responsable des propriétés acido-basiques de la molécule d'acide ascorbique
- E- L'acide 3,4,5,6-tétrahydroxy-2-oxohexanoïque est le nom systématique de l'acide ascorbique

QCM n°21:

A l'aide de l'énoncé et du document 10, choisissez la (ou les) proposition(s) exacte(s) :

- A- La molécule d'acide ascorbique comporte 4 atomes de carbone asymétriques
- B- L'acide ascorbique est une molécule chirale
- C- Le composé F ci-dessous est un énantiomère de l'acide ascorbique

- D- L'acide ascorbique et le composé F ont des propriétés physiques et chimiques différentes
- E- Un mélange équimolaire de l'acide ascorbique et du composé F est un mélange racémique.

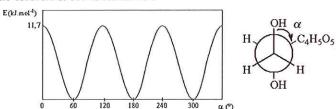
CHIMIE: EXERCICE 8: (3 points)

Document 11. Représentation de Newman de la molécule de propane

Pour représenter la conformation d'une molécule, il existe une représentation alternative à la représentation de Cram : la représentation, ou projection, de Newman. La molécule est représentée, de façon schématique, telle qu'on la verrait en alignant son œil dans l'axe de la liaison C-C autour de laquelle les groupes d'atomes sont en rotation. Selon la valeur de l'angle de torsion entre les liaisons situées autour de l'axe C-C de projection, une infinité de conformations existent, dont deux sont remarquables, la conformation décalée et la conformation éclipsée, telles que représentées ci-dessous.

QCM n°22:

Cette question est relative aux composés A à E représentés ci-contre en projection de Newman. A l'aide du doc. 11, déterminer lequel ou lesquels des couples représente(nt) un (des) couple(s) de stéréoisomères de conformation?


- A- Composé A et composé C
- B- Composé A et composé B
- C- Composé B et composé C
- D- Composé C et composé D
- E- Composé D et composé E

$$O_5C_4H_5$$
 O_5 $O_5C_4H_5$ O_5 O_5

QCM n°23:

Cette question est relative aux composés A à E représentés à la question n°22. Choisissez la (ou les) proposition(s) exacte(s):

- A- Deux stéréoisomères ont la même formule semi-développée plane mais des arrangements d'atomes dans l'espace différents
- B- Deux stéréoisomères de conformation d'une même molécule peuvent être obtenus à partir de ruptures et d'inversions de liaisons
- C- La conformation du composé C est plus stable que celle du composé E
- D- L'acide ascorbique possède une infinité de conformations
- E- L'allure de la courbe donnant l'énergie E des conformations de l'acide ascorbique en fonction de l'angle de torsion α est la suivante :

CHIMIE: EXERCICE 9: (5 points)

1. A l'aide document 10 (Cf. Exercice n°7), écrire à l'aide de formules semi-développées la demiéquation associée au couple acido-basique acide ascorbique/ion ascorbate.

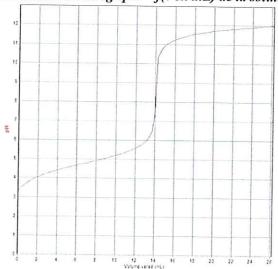
Dans la suite de l'exercice, on notera AH la molécule d'acide ascorbique et A celle de l'ion ascorbate. On souhaite déterminer la teneur en acide ascorbique d'un comprimé de vitamine C, dont un extrait de la notice est donné dans le document 12 ci-après. Le protocole expérimental du titrage est décrit dans le document 13, la courbe du titrage figure dans le document 14, et les données physico-chimiques de l'acide ascorbique sont fournies dans le document 15. A l'instant initial du titrage, on mesure le pH de la solution S d'acide ascorbique obtenue : on trouve pH = 3,2.

- 2. Quelle est de l'acide ascorbique ou de l'ion ascorbate, l'espèce prédominante dans la solution à l'instant initial du titrage ? Justifier votre réponse.
- 3. Ecrire l'équation de la réaction de l'acide ascorbique avec l'hydroxyde de sodium.
- 4. a) Indiquez (sans la détailler) quelle est la méthode à utiliser pour déterminer les coordonnées (V, pH) du point d'équivalence E de la courbe de titrage pH-métrique du document 14.
 b) Donner les coordonnées de ce point d'équivalence.
- 5. a) Déduire de la question 4 la quantité de matière n_A d'acide ascorbique dans la solution S. b) En déduire la masse m_A d'acide ascorbique contenue dans le comprimé.

Doc. 12. Extrait de la notice d'un comprimé à croquer Laroscorbine ®Vitamine	C 500 mg
Acide ascorbique Ascorbate de sodium	500,00 mg

Document 13. Protocole de titrage d'une solution de vitamine C

L'expérience est réalisée avec un comprimé LAROSCORBINE Vitamine C 500 mg, à croquer. Préparation de la solution de vitamine C :


- Broyer finement un comprimé de vitamine C 500 mg dans un mortier à l'aide d'un pilon.
- Placer un entonnoir sur la fiole jaugée et introduire la poudre obtenue dans l'entonnoir.
- Rincer soigneusement le mortier, le pilon et l'entonnoir pour éviter toute perte de produit.
- Réaliser la dissolution de l'acide ascorbique dans une fiole jaugée de 100 mL.

La solution ainsi obtenue de vitamine C sera notée S.

Protocole de titrage:

- Titrer la solution S par une solution d'hydroxyde de sodium de concentration $c_B = 0,20 \text{ mol.L}^{-1}$
- Réaliser le suivi pH-métrique du titrage
- Tracer la courbe pH = f(V) où V est le volume d'hydroxyde de sodium versé au cours du titrage.

Document 14. Courbe de titrage $pH = f(Ven \ mL)$ de la solution S

Document 15. Données physico-chimiques Acide ascorbique: $pK_A (HA/A^-) = 4,1$ $K_A = 9,5.10^{-5}$ Masse molaire: $M = 176 \text{ g.mol}^{-1}$ $Couple H_2O/HO^-$: $pK_A (H_2O/HO^-) = 14$

FIN DE L'EPREUVE DE CHIMIE

CONCOURS 2014 D'ADMISSION A L'ECOLE DE SANTE DES ARMEES

CATEGORIE BACCALAUREAT

Sections: Médecine – Pharmacie

EPREUVES ECRITES D'ADMISSIBILITE DE SCIENCES DE LA VIE ET DE LA TERRE

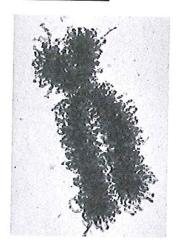
Durée: 1 heure 30 minutes

Coefficient: 4

Avril 2014

Avertissements

- L'utilisation d'encre rouge est interdite.
- L'utilisation de calculatrices, règles à calculs, formulaires, papier millimétré, téléphones portables est interdite.
- Vérifiez que ce fascicule comporte 14 pages numérotées de 1 à 14, page de garde comprise, ainsi qu'une grille de réponses de QCM.
- Il sera tenu compte de la qualité de la présentation de la copie et de l'orthographe.
- Toutes les réponses aux questions sous forme de QCM doivent être faites sur la grille de réponse jointe – Si le candidat répond aux questions QCM sur sa feuille et non sur la grille, ses réponses ne seront pas prises en compte par le correcteur.


EXERCICE 1 – Contrôle des connaissances

Durée: 15 min - 5.5 points

REPONSES ATTENDUES SUR LA GRILLE QCM

Pour tous les QCM, les candidats doivent cocher les lettres des propositions qu'ils considèrent comme « vrai ». Chaque question comporte <u>une ou plusieurs bonnes réponses.</u> Il est demandé aux candidats de faire très attention au numéro de la question quand ils « cochent » la grille de réponse. Il n'est pas possible d'avoir une note négative pour une question.

Question 1 : A propos du document ci-dessous :

- A. L'élément représenté sur le document appartient forcément à un organisme diploïde.
- B. Le document représente un chromosome en phase prophase.
- C. L'élément représenté sur le document ne comporte qu'une seule molécule d'ADN.
- D. La position du centromère permet de classer les chromosomes de longueur identique les uns par rapport aux autres afin d'établir un caryotype.
- E. Chaque chromatide est formée de l'association de deux molécules d'ADN.

Question 2 : La méiose :

- A. se déroule dans toutes les cellules de l'organisme.
- B. permet le brassage chromosomique.
- C. nécessite l'appariement des chromosomes homologues.
- D. consiste en la formation de cellules diploïdes à partir de cellules haploïdes.
- E. se déroule dès les premières divisions de la cellule œuf.

Question 3 : A propos de la méiose :

- A. Elle n'est pas précédée d'une réplication.
- B. Elle ne permet qu'un brassage interchromosomique.
- C. En métaphase 1, on peut compter 4 allèles d'un même gène.
- D. Après la première division de méïose, chaque cellule ne peut contenir qu'un seul type de chromosome sexuel.
- E. Les différents allèles d'un même gène sont toujours séparés lors de la première division de méiose.

<u>Questions 4 et 5 :</u> lors du réflexe rotulien le médecin vérifie l'état du réflexe myotatique en frappant, à l'aide d'un marteau en caoutchouc, au niveau du tendon du muscle extenseur de la jambe.

Question 4 : Le réflexe myotatique :

- A. commence par la contraction du muscle extenseur de la jambe.
- B. commence par la contraction du muscle fléchisseur de la cuisse.
- C. entraine la contraction du muscle étiré.
- D. Les motoneurones du muscle extenseur de la jambe sont inhibés par un interneurone.
- E. Les motoneurones du muscle extenseur de la jambe sont stimulés par un neurone sensoriel en provenance de ce même muscle.

Question 5 : Les motoneurones du muscle fléchisseur de la jambe :

- A. présentent leur corps cellulaire dans la corne ventrale de la moelle épinière.
- B. sont activés par le neurone sensoriel en provenance du muscle extenseur de la jambe dans le cadre du réflexe rotulien.
- C. Les corps cellulaires de ces motoneurones reçoivent à la fois des informations sensorielles en provenance du muscle extenseur et des informations motrices en provenance du cortex cérébral moteur.
- D. expriment une information nerveuse sous forme de potentiels d'action codés en amplitude.
- E. présentent plusieurs synapses neuromusculaires avec les cellules musculaires striées du muscle.

Question 6 : Reflexes et motricité :

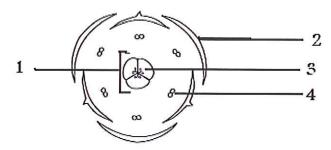
- A. Un motoneurone sectionné ne permet plus la transmission de l'influx sensitif du muscle vers la moelle épinière.
- B. Plus on augmente l'intensité de stimulation d'une fibre nerveuse, plus la vitesse de propagation des potentiels d'action sera élevée.
- C. La transmission synaptique est dépendante de la quantité de neurotransmetteurs libérés dans la fente synaptique.
- D. La fibre musculaire intègre l'influx de plusieurs motoneurones et réagit en fonction de la somme globale d'informations reçues.
- E. Le neurotransmetteur libéré au niveau d'une synapse neuromusculaire déclenche une dépolarisation de la membrane de la fibre musculaire.

Question 7: Le VIH:

- A. On dit qu'un patient est séropositif au VIH si le virus est détectable dans son sang.
- B. Le VIH infecte les lymphocytes B.
- C. Le VIH provoque une immunodéficience.
- D. L'infection par le VIH est une maladie opportuniste.
- E. La charge virale correspond à la quantité de virus détectés dans le sang du patient.

Question 8 : A propos de la réponse adaptative :

- A. Les LTCD4 sont activés par reconnaissance d'un antigène dont ils sont spécifiques via leurs anticorps membranaires
- B. Les plasmocytes sont des lymphocytes qui ont été activés par un antigène et qui secrètent des immunoglobulines
- C. Les cellules présentatrices d'antigènes sont des phagocytes
- D. Un anticorps donné peut reconnaître une multitude d'antigènes par sa région variable
- E. La genèse, de façon aléatoire, d'une très grande diversité de type de lymphocytes conduit à des lymphocytes auto réactifs qui doivent être éliminés.


Question 9 : Les racines des végétaux :

- A. peuvent être des organes de réserves.
- B. servent à l'absorption de l'eau.
- C. servent à l'absorption de sels minéraux.
- D. Absorbent du CO₂ et rejettent de l'O₂.
- E. Leur surface peut être augmentée par la présence d'ostioles.

Question 10: La fleur:

- A. contient les étamines qui sont les organes reproducteurs femelles.
- B. donnera le fruit suite à la fécondation des ovules.
- C. est un organe impliqué dans les échanges gazeux de la plante avec l'environnement.
- D. peut avoir co-évoluée avec un insecte assurant sa pollinisation.
- E. Le pistil contient un ovaire contenant lui-même des ovules.

Question 11: À propos de ce diagramme floral:

- A. La légende 1 correspond au pistil.
- B. La légende 2 correspond aux pétales.
- C. La légende 3 correspond au pollen.
- D. La légende 4 correspond à une étamine.
- E. Cette fleur a 3 pétales.

EXERCICE 2 – Génétique et immunité : le cas complexe de la grossesse

Durée: 15 min - 4 points

REPONSES ATTENDUES SUR LA GRILLE QCM

Soit le gène rhésus localisé sur le chromosome 1 codant pour la protéine RHD exprimée à la surface des globules rouges. Ce gène présente 2 allèles :

- l'allèle rhésus positif ou Rh+ qui conduit à l'expression de la protéine RHD à la surface des globules rouges
- et l'allèle rhésus négatif ou rh- qui ne permet pas l'expression de la protéine RHD à la surface des globules rouges

L'allèle Rh+ domine sur l'allèle rh- et la transmission de ce gène suit une loi mendélienne.

Question 12 : Chez un individu de phénotype [rhésus positif] :

- A. le génotype peut être Rh+//Rh+.
- B. le génotype peut être rh-//Rh+.
- C. le génotype peut être Rh+//rh-.
- D. le génotype peut être rh-//rh-.
- E. On ne peut pas déterminer avec certitude son génotype exact à partir de cette seule information.

Un couple est composé de Mme Durand de génotype rh-//rh- et Mr Durand de génotype Rh+//rh-.

Question 13: Vous pouvez affirmer que:

- A. Mme Durand aura des globules rouges porteurs de la protéine RHD.
- B. Mme Durand est de phénotype [rhésus négatif].
- C. Mr Durand aura des globules rouges porteurs de la protéine RHD.
- D. la moitié des globules rouges de Mr Durand portera la protéine RHD et l'autre moitié en sera dépourvue.
- E. Mr Durand est de phénotype [rhésus positif].

Ce couple attend son premier enfant.

Question 14: Cet enfant:

- A. aura une chance sur 2 d'être de phénotype [rhésus positif].
- B. aura une chance sur 4 d'être de phénotype [rhésus négatif].
- C. aura une chance sur 4 d'être de génotype rh-//rh-.
- D. aura une chance sur 2 d'être de génotype rh-//Rh+.
- E. Si l'enfant est de phénotype [rhésus positif], alors son génotype sera soit Rh+//Rh+, soit Rh+//rh-.

Lors d'une grossesse non pathologique, il n'y a généralement pas de passage du sang maternel au fœtus et pas de passage du sang fœtal à la mère. Seules les molécules nutritives, les gaz (O2 et CO2) et certaines immunoglobulines passent la barrière placentaire. Les cellules sont des éléments bien trop gros pour passer. Cependant, dans de rares cas de décollement placentaire (une complication de la grossesse qui implique une fragilisation du placenta et impose un alitement de la mère), des globules rouges fœtaux peuvent passer chez la mère.

Question 15: Si Mme Durand avait un décollement placentaire, quelles sont les molécules qui entreraient en jeu dans le cas d'un contact entre les globules rouges d'un fœtus de phénotype [rhésus positif] et le sang de la mère ?

- A. Des adjuvants.
- B. Des anticorps.
- C. La protéine RHD fœtale.
- D. Des interleukines 2.
- E. Des anti-inflammatoires.

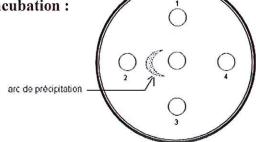
Question 16 : Si Mme Durand avait un décollement placentaire, quelles pourraient être les conséquences du passage de globules rouges d'un enfant de phénotype [rhésus positif] dans son sang ?

- A. Les globules rouges de phénotype [rhésus positif] de l'enfant provoquent la destruction des globules rouges phénotype [rhésus négatif] de la mère.
- B. Les globules rouges de l'enfant passés dans le sang de la mère vont être reconnus comme étrangers par le système immunitaire de la mère et induire une prolifération clonale des lymphocytes B spécifiques de RHD.
- C. La formation de complexes immuns entre des anticorps anti RHD produit par la mère et les globules rouges de l'enfant.
- D. L'activation de LTCD8 spécifiques de la protéine RHD.
- E. Une réaction allergique de la mère à ces globules rouges de phénotype [rhésus positif]

Dans le cas de décollement placentaire, le gynécologue prescrit d'urgence une injection d'immunoglobulines anti RHD à la mère.

Ouestion 17 : Le rôle des anticorps prescrits par le gynécologue est de :

- A. se fixer aux protéines RHD des globules rouges de l'enfant passés dans le sang de la mère pour empêcher qu'elles ne soient reconnues par les lymphocytes de la mère.
- B. provoquer une destruction des globules rouges de l'enfant qui sont passés dans le sang de la mère par les lymphocytes cytotoxiques de la mère.
- C. éviter le déclenchement d'une réponse immunitaire adaptative de la mère vis-à-vis de ces globules rouges étrangers.
- D. détruire les lymphocytes B de la mère qui pourraient reconnaître la protéine RHD des globules rouges de l'enfant.
- E. bloquer les médiateurs chimiques de l'inflammation.


La grossesse de Mme Durand s'est finalement très bien passée. Elle a eu un garçon de phénotype [rhésus positif] Cependant, lors de l'accouchement, le risque de contact entre le sang fœtal et maternel est très important et pas clairement évaluable. Le gynécologue lui fait alors une injection d'anti-RHD.

Question 18 : Pourquoi est-il nécessaire de faire cette injection après l'accouchement ?

- A. Pour éviter la phagocytose des protéines RHD qui auraient pu passer du sang de l'enfant à celui de la mère lors de l'accouchement.
- B. Pour éviter le passage de lymphocytes T CD4 spécifiques de RHD membranaire au travers de la barrière placentaire.
- C. Pour permettre la destruction du placenta.
- D. Pour éviter l'acquisition de lymphocytes B mémoires spécifiques de la protéine RHD par Mme Durand.
- E. Cette injection n'aurait pas été nécessaire si son fils avait été de phénotype [rhésus négatif].

Le gynécologue suit également 4 autres patientes [rhésus négatif] enceintes, chacune mère d'un premier enfant [rhésus positif]. Par mesure préventive, le gynécologue fait une recherche d'anticorps anti RHD en utilisant le test d'Ouchterlony. Après prise de sang, les anticorps sont extraits du sang de chacune des 4 patientes et déposés dans des puits de gélose situés autour d'un puits central contenant la protéine RHD. Le puits 1 correspond aux anticorps extraits du sang de la patiente n°1, le puits 2 aux anticorps extraits du sang de la patiente n°2, et ainsi de suite.

Voici le résultat après 24h d'incubation:

Question 19 : Quelle(s) est(sont) la(es) patiente(s) susceptible(s) d'avoir une grossesse à risque si le second enfant est de rhésus positif ?

- A. La patiente n°1.
- B. La patiente n°2.
- C. La patiente n°3.
- D. La patiente nº4.
- E. Ce test met en évidence une précipitation de complexes immuns anticorps anti rhésus/RHD.

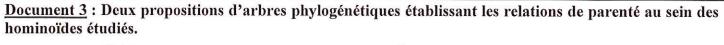
EXERCICE 3 – Evolution de l'Homme

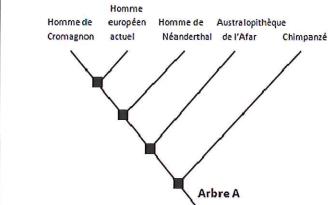
Durée: 5 min - 1.5 points

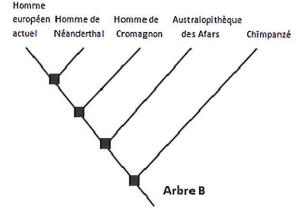
REPONSES ATTENDUES SUR LA GRILLE QCM

Les parentés chez les hominoïdes sont établies à partir de différents critères dont les documents ci-dessous donnent des exemples.

Document 1 : Tableau de caractères morpho-anatomiques de quelques hominoïdes.


En gras = état dérivé du caractère.


En italique = état ancestral du caractère.


	Gros orteil	Prognathisme	Epaisseur de l'émail des dents	Os iliaque (= os du bassin)	Position du trou occipital	Saillie des pommettes
Chimpanzé	Ecarté	Marqué	Fin	Allongé	En arrière	Peu saillantes
Australopithèque des Afars	Ecarté	Marqué	Epais	Court	Intermédiaire	Saillantes
Homme de Neandertal	Rapproché	Absent	Epais	Court	Avancé	Peu saillantes
Homo sapiens	Rapproché	Absent	Epais	Court	Avancé	Peu saillantes

<u>Document 2</u>: Matrice des différences de séquence, en pourcentage, entre des fragments d'ADN homologue (codant pour une même protéine donnée), chez quatre espèces d'hominoïdes.

	Homme de Neandertal	Homme de Cro-Magnon (Homo sapiens)	Homme européen actuel (Homo sapiens)	Chimpanzé
Homme de Neandertal	0	22	23	59
Homme de Cro-Magnon		0	1	58
Homme européen actuel			0	58
Chimpanzé				0

Question 20 : D'après vos connaissances, vous pouvez dire que :

- A. l'Homme et le Chimpanzé sont génétiquement très proches.
- B. le phénotype humain s'acquière uniquement après la naissance.
- C. le phénotype d'un individu de l'espèce Chimpanzé est lié à l'expression génétique mais aux facteurs environnementaux.
- D. le nombre de différences existant entre des fragments d'ADN homologue de deux espèces s'explique seulement par les duplications.
- E. l'Homme est le seul représentant actuel du genre homo.

Question 21 : D'après le document 1, vous pouvez dire que :

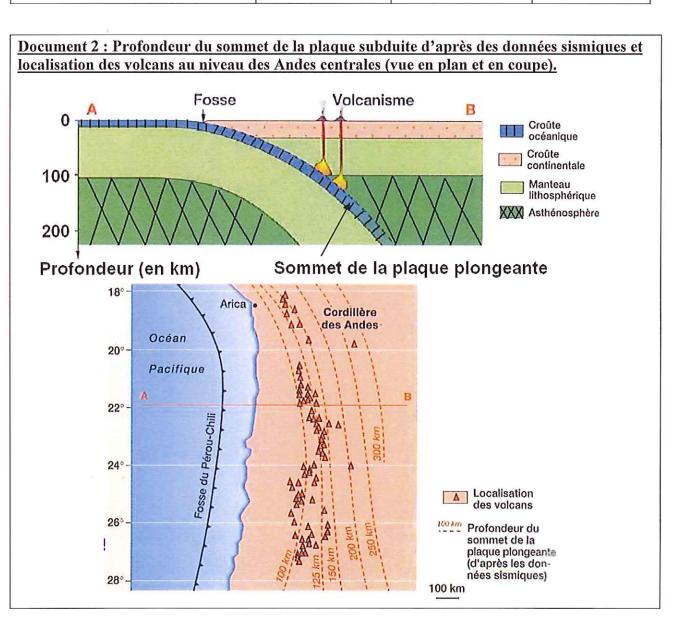
- A. l'Australopithèque des Afars est plus proche du Chimpanzé que de l'Homme de Neandertal.
- B. le Chimpanzé présente tous les caractères à l'état ancestral.
- C. le caractère ancestral « gros orteil écarté » de l'Australopithèque en fait le plus proche parent du Chimpanzé.
- D. d'après les données morpho-anatomiques, les deux espèces les plus proches sont l'Homme de Neandertal et Homo sapiens.
- E. l'Australopithèque des Afars ne fait pas partie de la lignée humaine car il ne possède pas tous les caractères à l'état dérivé que l'on trouve chez Homo sapiens.

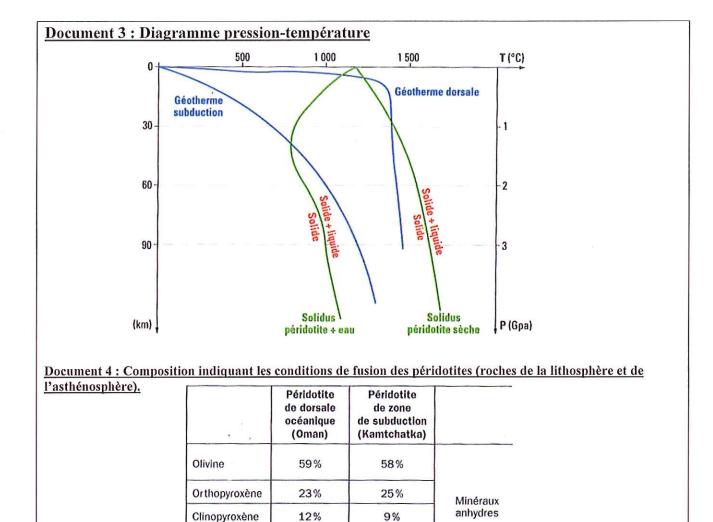
Question 22 : D'après les documents 2 et 3, vous pouvez dire que :

- A. d'après les données fournies, c'est l'arbre A qui est juste.
- B. d'après les données fournies, c'est l'arbre B qui est juste.
- C. selon l'arbre phylogénétique A, l'Homme européen actuel et l'Homme de Cro-magnon, sont les plus proches parents.
- D. les innovations génétiques du document 1 pourraient être notées sur les arbres phylogénétiques au niveau des carrés noirs.
- E. d'après l'arbre B, l'Australopithèque des Afars partage un ancêtre commun plus récent avec l'Homme de Cro-Magnon qu'avec le Chimpanzé.

EXERCICE 4 – Convergence lithosphérique

Durée: 10 min - 2.5 points


REPONSES ATTENDUES SUR LA GRILLE QCM


On cherche à déterminer l'origine du magma des zones de subduction.

Pour cela on étudie des roches prélevées dans la Cordillère des Andes, en surface, au niveau de la zone volcanique. On propose à l'étude 3 roches : une granodiorite, une rhyolite et une andésite. Ces 3 roches proviennent toutes du même magma.

Document 1 : Structure des roches observées à l'œil nu

	Granodiorite	Rhyolite	Andésite
Cristaux de grande taille	BEAUCOUP	QUELQUES UNS	QUELQUES UNS
Cristaux de petite taille	QUELQUES UNS	BEAUCOUP	BEAUCOUP
Matrice de verre	NON	OUI	OUI

Question 23 : D'après vos connaissances :

Plagioclase

Amphibole

Grenat

Mica

A. la croûte continentale est essentiellement constituée de roches voisines du granite.

5%

B. la croûte océanique a une épaisseur plus faible et une densité plus faible que la croûte continentale.

3%

3%

2%

Minéraux fortement hydratés

- C. dans un contexte de collision, ce sont deux lithosphères continentales qui sont en convergence.
- D. la dorsale océanique est une zone d'accrétion, avec formation de lithosphère océanique.
- E. une zone de subduction est une zone de divergence.

Question 24 : D'après le document 1 et vos connaissances, on peut dire que :

- A. la Granodiorite est une roche à structure grenue.
- B. la Rhyolite est une roche volcanique.
- C. l'Andésite sera rejetée en surface par le volcanisme et la Granodiorite cristallisera en profondeur
- D. Granodiorite, Rhyolite et Andésite sont 3 roches qui ont une composition chimique proche.
- E. l'andésite a une structure microlitique caractérisée par de gros cristaux tous jointifs.

Question 25 : D'après le document 2 et vos connaissances, on peut dire que :

- A. la grande majorité des volcans de la Cordillère des Andes a une chambre magmatique située entre 100 et 150Km de profondeur.
- B. la structure des roches change entre la lithosphère et l'asthénosphère.
- C. dans une zone de subduction, la chaine volcanique est toujours parallèle à la fosse océanique et placée systématiquement au sein de la lithosphère continentale.
- D. dans les zones de subduction, les volcans émettent souvent de la lave visqueuse avec des éruptions fréquemment explosives.
- E. Les séismes de la plaque plongeante sont répartis selon le plan de Bénioff.

Question 26 : D'après les documents 3 et 4, et vos connaissances, on peut dire que :

- A. à 30Km sous la dorsale océanique, on peut considérer que la température est d'environ 750°C.
- B. dans une zone de subduction, à 60Km de profondeur, les péridotites hydratées sont obligatoirement solides.
- C. dans une zone de dorsale océanique, à 60 Km de profondeur, les péridotites sèches sont obligatoirement solides.
- D. si la péridotite est sèche, elle ne pourra jamais être à l'état liquide et donc former une chambre magmatique, au niveau d'une dorsale océanique.
- E. A une profondeur donnée, l'eau abaisse le point de fusion d'une roche.

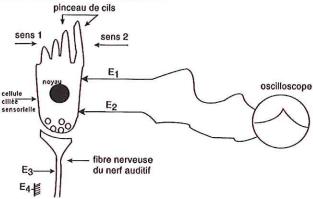
Question 27: Après synthèse de tous les documents, et à l'aide de vos connaissances, vous pouvez dire que :

- A. la croûte océanique est hydratée au fur et à mesure de son refroidissement et donc de son éloignement de la dorsale océanique.
- B. la densité croissante de la lithosphère océanique au cours de son éloignement de la dorsale océanique est l'un des moteurs de sa subduction.
- C. c'est la péridotite de l'asthénosphère sous la lithosphère plongeante qui est hydratée.
- D. le volcanisme des zones de subduction produit, en surface, un nouveau matériau océanique.
- E. Rhyolite et Andésite sont 2 roches volcaniques issues de roches de la lithosphère subduite.

EXERCICE 5 – Le message nerveux

Durée: 45 min - 6,5 points

REPONSES ATTENDUES SUR VOTRE COPIE


Les réponses seront sous forme de tableaux ou de phrases courtes construites.

Partie 1:

On se propose d'étudier comment naît et se transmet le message auditif. Pour cela, on étudie la réponse électrique de cellules ciliées sensorielles de l'oreille interne en isolant et plaçant ces cellules dans un milieu dont on peut faire varier la composition.

Deux électrodes, E1 et E2, reliées à un système d'enregistrement, captent la réponse électrique de cette cellule à un stimulus constitué par le déplacement du pinceau de cils sensoriels, poussé par une tige en verre (document 1). La tige de verre peut être déplacée dans le sens 1 ou 2 ou dans le sens 1 deux fois de suite. On mesure l'évolution de la différence de potentiel mesurée par E1 et E2. (document 2).

Document 1 : schématisation du dispositif expérimental.

La cellule est placée dans un milieu physiologique A contenant 140 mmol/Litre de Na⁺. L'électrode E2 est introduite dans la cellule au temps t, alors que l'électrode E1 reste en surface. Au temps t2, on déplace le pinceau de cils :

- soit dans le sens 1;
- soit dans le sens 2 :
- soit dans le sens 1 deux fois consécutives.

L'électrode E3 est introduite au niveau de la fibre nerveuse du nerf auditif, l'électrode E4 est disposée en surface.

- 1) A quoi correspond le potentiel membranaire?
- 2) Que mesure-t-on au temps « t » ? Préciser ses caractéristiques.
- 3) Pour chacun des cas, décrivez les réponses enregistrées lors du déplacement du pinceau de cils en utilisant le vocabulaire scientifique adapté. (une ou deux phrases maximum sont attendues par cas)
- 4) Justifier pourquoi la cellule ciliée de l'oreille interne peut bien être qualifiée de cellule réceptrice.

On place ensuite cette cellule dans un milieu B contenant 200 mmol/Litre de Na⁺. On renouvelle l'expérience précédente en conservant exactement les mêmes mouvements de la tige en verre. L'amplitude des 2 enregistrements obtenus pour un déplacement des cils dans le sens 1 est plus importante.

5) Proposer une hypothèse permettant d'expliquer les observations citées ci-dessus.

On enregistre, grâce aux électrodes E3 et E4 (voir document 1), l'activité électrique d'une fibre nerveuse auditive placée dans le milieu physiologique A.

Document 3 : enregistrement de l'activité électrique de la fibre nerveuse auditive.					
3a		30	,		
3 <i>b</i>		3d			

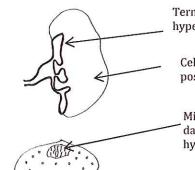
- Le tracé 3a est obtenu quand le déplacement se fait dans le sens 1.
- Le tracé 3b est obtenu quand le déplacement se fait dans le sens 1 deux fois de suite.
- Le tracé 3c est obtenu en l'absence de déplacement de la tige de verre (= tracé témoin).
- Le tracé 3d est obtenu quand le déplacement se fait dans le sens 2.
 - 6) Schématiser l'un des bâtonnets enregistrés sur le document 3, en détails, sur une échelle de temps plus adaptée et légender.
 - 7) En mettant en relation les documents 2 et 3, décrivez comment la fibre nerveuse répond aux différentes stimulations. Quelle caractéristique du message nerveux est ainsi mise en évidence ?

Partie 2:

On étudie maintenant une synapse entre un neurone sensoriel et le corps cellulaire d'une cellule dite « cellule buissonnante post-synaptique» située dans le tronc cérébral au niveau du système nerveux central auditif. Cette synapse est située dans le noyau cochléaire antéro-ventral. Il s'agit de la synapse de Held.

On compare la synapse de Held d'un chat sourd congénital avec celle d'un chat normo-entendant. (Document 4)

Document 4


<u>4a (haut)</u>: schéma de la connexion entre la terminaison synaptique d'un axone et la cellule buissonnante post-synaptique d'un chat normo-entendant (à gauche) et d'un chat sourd (à droite).

<u>4b (bas)</u>: représentation schématique en microscopie électronique du contact entre l'axone et la cellule buissonnante post-synaptique d'un chat normo-entendant (à gauche) et d'un chat sourd (à droite) et interprétation.

a.

b.

Terminaison synaptique hypertrophiée

Cellule buissonnante post-synaptique

Mitochondrie dégénérée dans le bouton synaptique hypertrophié

Récepteurs post-synaptiques de la cellule buissonnante

Chat normo-entendant

On observe de nombreuses mitochondries fonctionnelles.

Les vésicules synaptiques sont groupées au niveau des zones d'exocytose. Les récepteurs post-synaptiques sont groupés dans des zones actives.

Chat sourd

On observe des vésicules synaptiques réparties uniformément dans le bouton synaptique et des mitochondries dégénérées.

La membrane post-synaptique comporte une densité anormale de récepteurs postsynaptiques spécifiques au neurotransmetteur. Cette forte densité de récepteurs déforme la membrane post-synaptique qui devient alors hypertrophiée.

On traite un chat sourd congénital dès la naissance. Pendant 3 mois, des stimulations électriques intra-cochléaires sont appliquées dans l'oreille interne. Le neurone en contact avec la cellule buissonnante répond à ce traitement et transmet à nouveau des potentiels d'actions. On observe alors une terminaison synaptique normale et aplatie ainsi qu'une membrane post-synaptique présentant une densité normale de récepteurs.

8) Pourquoi parle-t-on ici de « plasticité synaptique »?

9) Les stimulations électriques exercées sur l'oreille interne du chat sourd permettent la mise en place de tous les éléments d'une synapse à nouveau structurellement fonctionnelle. Après avoir récapitulé les étapes du fonctionnement synaptique sous forme d'un schéma fléché, quelle étape permet de retrouver une membrane post-synaptique aplatie avec des récepteurs regroupés en zones actives ? Justifier la réponse.

CONCOURS 2014 D'ADMISSION DANS LES ECOLES DU SERVICE DE

SANTE DES ARMEES

CATEGORIE BACCALAUREAT - Sections : Médecine - Pharmacie

EPREUVE DE MATHEMATIQUES

Avril 2014

Durée: 1 heure 30 minutes

Coefficient: 3

Avertissement:

- L'utilisation de calculatrice, de règle de calcul, de formulaire et de papier millimétré n'est pas autorisée.
- Il ne sera pas fait usage d'encre rouge.
- Il sera tenu compte de la qualité de la présentation des copies et de l'orthographe.
- Les candidats traiteront les trois exercices.
- Les réponses des exercices n°1 et n°2 (QCM) seront données sur une grille prévue à cet effet.
- L'exercice n° 3 sera traité sur une copie à part.

EXERCICE 1:7 points

Pour chacune des questions, une seule des quatre affirmations A, B, C ou D est exacte.

On demande au candidat d'indiquer sans justification la réponse qui lui paraît exacte en cochant la case sur la grille prévue à cet effet.

Toute réponse juste est comptée +1 point. Toute réponse fausse est comptée -0.5 point. Une absence de réponse est comptée 0 point. Si le total est négatif, la note est ramenée à 0.

QCM 1:

Soit la fonction h définie pour tout x réel par : $h(x) = e^{-x} - x + 4$.

$$h(x) = e^{-x} - x + 4$$

Soit C la courbe représentative de h.

A.
$$h'(x) = e^{-x} - 1$$

- B. h admet un maximum
- C. C admet une asymptote horizontale
- D. L'équation h(x) = 5 a une solution unique dans l'ensemble des réels

QCM 2:

Dans l'ensemble des réels, l'inéquation : $-2xe^{-x+1} \ge 0$ a pour ensemble de solutions :

- A. Ø
- B. {0}
- C.]-∞;0]
- D. [0;+∞[

QCM 3:

On considère l'intégrale $I = \int_1^e t^2 \ln(t) dt$.

On pourra, pour calculer I, utiliser la dérivée de la fonction h définie sur [1; e] par :

$$h(t) = t^3[3 \ln(t) - 1].$$

La valeur exacte de l est :

$$A \cdot (2 e^3 + 1)/9$$

B.
$$2e^3 + 1$$

D.
$$(e^2 + 2e) / 9$$

QCM 4:

Soit la fonction f définie pour tout x réel par $f(x) = x \cos x$.

La dérivée f' de f est définie pour tout x réel par f'(x) =

- A. $-\sin x$
- B. $\cos x$
- C. $\cos x + x \sin x$
- D. $\cos x x \sin x$

QCM 5:

Soit la fonction f définie pour tout x réel par $f(x) = x \cos x$.

La primitive F de f sur IR telle que F(0) = 1 est définie pour tout x réel par :

- A. $\frac{x^2}{2} \sin x + 1$
- B. $-\frac{x^2}{2} \sin x + 1$
- C. $\cos x + x \sin x$
- D. $\cos x x \sin x$

QCM 6:

L'intégrale $\int_2^4 \frac{3x}{x^2-1} dx$ est égale à:

- A. 3 ln(12)
- B. 1,5 ln(5)
- C. 1,5 ln(12)
- D. autre

QCM 7:

On considère la fonction f dérivable sur] 0; + ∞ [et définie par : $f(x) = \frac{-x^2 - 2 \ln x}{x}$.

La limite de f en + ∞ est égale à :

- A. 0
- B. -∞
- C. +∞
- D. 1

EXERCICE 2:7 points

Pour chacune des questions, une seule des quatre affirmations A, B, C ou D est exacte.

On demande au candidat d'indiquer <u>sans justification</u> la réponse qui lui paraît exacte <u>en cochant la case sur la grille prévue à cet effet.</u>

Toute réponse juste est comptée +1 point. Toute réponse fausse est comptée -0.5 point. Une absence de réponse est comptée 0 point. Si le total est négatif, la note est ramenée à 0.

QCM 1:

Une solution de l'équation $2z + \bar{z} = 9 + i$ est :

- A. 18-i
- B. 1
- C. 3+i
- D. 9 i

QCM 2:

On considère la suite u définie par son premier terme $u_0 = 1$ et la relation de récurrence :

$$u_{n+1} = \frac{1}{3}u_n + 2$$
.

- A. la suite u est géométrique
- B. la suite u est arithmétique
- C. la suite u est majorée par 3
- D. la suite u est convergente vers 2

QCM 3:

On considère trois suites u, v, w qui vérifient la propriété suivante :

Pour tout nombre entier naturel n non nul : $u_n < v_n < w_n$

Si
$$\lim_{n\to\infty} (u_n) = 2$$
 et si $w_n = u_n + \frac{1}{n}$, alors :

- A. on ne peut pas dire si la suite (v_n) converge
- B. la suite (v_n) n'a pas de limite
- C. $\lim_{n\to\infty}(v_n) > 2$
- D. $\lim_{n\to\infty}(v_n)=2$

QCM 4:

Un sac contient 4 boules noires et 3 boules rouges. On tire successivement et sans remise 2 boules du sac. Sachant que la première boule tirée est noire, la probabilité que la seconde soit noire est :

- A.
- B. $\frac{4}{7}$ C. $\frac{1}{2}$ D. $\frac{2}{3}$

QCM 5:

On lance un dé cubique bien équilibré et on lit le numéro inscrit sur la face supérieure du dé.

Soit les événements :

I: « le numéro est inférieur ou égal à 3 »

M: « le numéro est un multiple de 3 ».

- A. $P(I \cup M) = \frac{5}{6}$
- B. $P(I \cap M) = \frac{1}{2}$
- C. I et M sont incompatibles
- D. I et M sont indépendants

QCM 6:

Une maladie frappe 2% de la population d'un pays. Pour dépister cette maladie, on utilise un test. On sait que:

- la probabilité que le test soit positif, sachant que l'individu est malade, est 0,9;
- la probabilité que le test soit négatif, sachant que l'individu n'est pas malade, est 0,9.

On note les événements :

M+: « l'individu est malade »

M-: « l'individu n'est pas malade »

T+: « le test est positif »

T- « le test est négatif »

- A. P_{M+} (T+) vaut 0,1
- B. P(T+) vaut 0,278
- C. P(T+) vaut 0,22
- D. P_{T+} (M+) vaut environ 0,16

QCM 7:

X est une variable aléatoire suivant une loi uniforme sur [2;20].

La probabilité $P_{X>6}$ (5 < X < 10) est égale à :

- A. $\frac{5}{18}$
- B. $\frac{5}{14}$
- C. $\frac{2}{7}$
- D. $\frac{1}{4}$

EXERCICE 3 (6 points)

Un essai thérapeutique est réalisé chez des patients atteints d'une maladie associée à une très forte mortalité. Les données de cet essai sont correctement ajustées par un modèle de survie exponentielle.

Soit X_A la variable aléatoire qui suit la loi exponentielle de paramètre λ_A = 0,22.

C'est-à-dire P($X_A \le t$) = $\int_0^t 0.22e^{-0.22x} dx$.

Soit X_B la variable aléatoire qui suit la loi exponentielle de paramètre λ_B = 0,11.

C'est-à-dire P($X_B \le t$) = $\int_0^t 0.11e^{-0.11x} dx$.

t représente le temps en années avec $t \ge 0$.

Avec un traitement A, la probabilité de survie à l'instant t est égale à $S_A(t) = P(X_A > t)$

Avec un traitement B, la probabilité de survie à l'instant t est égale à $S_B(t) = P(X_B > t)$

Aide aux calculs : $e^{-2.2} \approx 0.111$ et $\sqrt{0.111} \approx 0.333$

- 1) Calculer $P(X_A \le 10)$.
- 2) Démontrer que pour tout t positif, $S_A(t) = e^{-0.22t}$
- 3) Donner le tableau de variation complet de la fonction S_A. Justifier.
- 4) Calculer la probabilité de survie à 10 ans dans le cas du traitement B.
- 5) Calculer la probabilité de survie à 5 ans dans le cas du traitement A.
- 6) Le rapport des probabilités de survie des traitements A et B est-il constant au cours du temps ?
- 7) Pour t fixé, établir la relation entre la survie dans le cas du traitement A et la survie dans le cas du traitement B.

PHYSIQUE: EXERCICE 1 (5 points)

					MORRE	
I point	0,2	0,2	0,2	0,2	0,2	-
QCM I:	Item A: Vrai Une onde se propage sans transport de matière mais avec un transport d'énergie	Item B: Faux Une onde se propage sans transport de matière mais avec un transport d'énergie	Item C: Faux La longueur d'onde est la distance parcourue par l'onde au bout d'une période temporelle	Item $D: Vrai$ Deux points sont en phase si la distance Δx qui les sépare vérifie la relation : $\Delta x = n.\lambda$ avec $n =$ entier	Item E: Vrai L'effet Doppler existe lorsque l'émetteur et la source sont en mouvement relatif	

Notation du OCM: + 0,2 pt par item correct; - 0,2 pt par item incorrect; note minimale du QCM devant être nulle

2 points		2 pts	PARACTICAL PROPERTY OF THE PRO	
		\times 700)] + [(2 × 2 × 3.10 ⁻²) / (5 × 300)]	$(8.10^{-4} \text{ s} = 180 \mu\text{s})$	les autres cas de ngame
QCM 2:	$\Delta t = \Delta t (tissu) + \Delta t (rein) = (2.L_{tissu} / V_{tissu}) + (2.L_{rein} / V_{rein})$	$\Delta t = (2 \times 7.10^{-2} / 1400) + (2 \times 6.10^{-2} / 1500) = [(2 \times 7.10^{-2}) / (2 \times 7.$	$\Delta t = [(10^{-2})/(10^{2})] + [(4.10^{-2})/(5.10^{2})] = (10^{-4}) + (0.8.10^{-4}) = 1.8.10^{-4}$	Notation du OCM: +2 pts si item C seul coché; 0 pt dans tous

QCM3:	I point
Item A: Vrai	6.0
$F_{\text{rein}} = V_{\text{rein}} / \lambda_{\text{lein}} = (1500) / (5.10^{-4}) = (15/5).10^6 = 3.10^6 \text{ Hz} = 3 \text{ MHz}$	7.0
Item B: Faux	00
La fréquence d'une onde est caractéristique de sa source	U.S. C.
Item C: Vrai	0
$\lambda = V / F$ avec F qui ne dépend pas du milieu et V qui dépend du milieu $\Rightarrow \lambda$ dépend du milieu	0,2
Item D: Faux	00
La diffraction augmente si le rapport (longueur d'onde / taille de l'obstacle) augmente	0,2
Item E: Vrai	00
La diffraction augmente si le rapport (longueur d'onde / taille de l'obstacle) augmente	۵,0

Notation du OCM: + 0,2 pt par item correct; - 0,2 pt par item incorrect; note minimale du QCM devant être nulle

$dB) = 10.\text{Log}(I/I_0) \Leftrightarrow I = 10^{U/I_0} \times I_0$	z_{M} 4:	I point
	$10.\text{Log}(I/I_0) \Leftrightarrow 1$	77 %

Notation du OCM: + 1 pt si item B seul coché; 0 pt dans tous les autres cas de figure

dimensions de l'ouverture ou de l'obstacle

Savoir que l'importance du phénomène de diffraction

est liée au rapport de la longueur d'onde aux

Connaître et exploiter la relation liant le niveau d'intensité sonore à l'intensité sonore Compétences exigibles

PHYSIQUE: EXERCICE 2 (5 points)

QCM 5:	I point	Compétences exigibles
Item A: Vrai C'est une émission donc elle se fait forcément du niveau excité vers un niveau moins excité	0,2	
Item B: Faux Le photon inducteur doit avoir la même énergie que le photon induit	0,2	Connaître le principe de l'émission stimulée
Item C: Vrai	0.2	
Caractéristique de l'émission induite	260	
Item D: Vrai	0	
Caractéristique de l'émission induite	0,2	
Item E: Faux		
Pour un laser à émission pulsée ou continue, le faisceau laser est très directif		Connaître les propriétés du laser
⇔ « concentration spatiale de l'énergie »	0,2	
Pour un laser à émission pulsée seulement, la lumière laser est émise pendant de courts instants répétitifs		
⇔ « concentration temporelle de l'énergie »		
Notation du OCM: + 0,2 pt par item correct; - 0,2 pt par item incorrect; note minimale du QCM devant être nulle	tre nulle	
OCM 6.	2 -0 -0 -0	
OCM 6:	2 points	competences exiginites
Item A: Faux La diffraction est observée si la longueur d'onde est de l'ordre ou supérieure à la raille de l'obstacle	0,4	identitier les situations prysiques ou il est perimen de prendre en compte le phénomène de diffraction
AD STATE OF THE PROPERTY OF TH		Associer un domaine spectral
Dans le domaine Infra-Rouge, les transitions énergétiques observées sont de type vibrationnel	0,4	à la nature de la transition mise en jeu
Item C: Vrai		Définir la notion de quantité de mouvement
p = m.V	0,4	d'un point matériel
donc p s'exprime en kg.(m.s ⁻¹)		Compétence transversale : unité des grandeurs
Item D: Vrai		
Relation de De Broglie:		Converte of utilisary
$p = h / \lambda$	0,4	In molation n = 16/3
$p = (6.10^{-34}) / (2000.10^{-9}) = (6/2).(10^{-34}/10^{-6})$		μ relation $p - m \lambda$
$p = 3.10^{-28} \text{ USI}$		
Item E: Vrai		
Relation de Planck:		Connaître et utiliser la relation de Planck
$E = h.F = h.(c/\lambda) = c.p$	0,4	(compétence de Première S réutilisée
$E = 3.10^{8} \times 3.10^{-28}$		dans les chapitres de Terminale S)
$E = 9.10^{-20} J$		
Notation du OCM: + 0.4 pt par item correct : - 0.4 pt par item incorrect : note minimale du OCM devant être nulle	tre nulle	

Notation du OCM: + 0,4 pt par item correct; - 0,4 pt par item incorrect; note minimale du QCM devant être nulle

QCM 7:	I point	
Masse d'ions Ca^{2+} contenue dans le calcul :		
$m(Ca^{2+}) = 0.2 \times m(calcul)$		
Nombre de moles d'ions Ca ²⁺ contenues dans le calcul:		
$n(Ca^{2+}) = m(Ca^{2+}) / M(Ca^{2+})$		ţ
Nombre d'ions Ca ²⁺ contenus dans le calcul:	I pt	Evalu
$N(Ca^{2+}) = N_A \times n(Ca^{2+}) = N_A \times [m(Ca^{2+}) / M(Ca^{2+})]$	•	доша
Application numérique :		
$N(Ca^{2+}) = 6.10^{23} \times [0.2 \times 4 / 40] = 6.10^{23} \times [0.2 \times 1 / 10] = 6.10^{23} \times 2.10^{-2} = 12.10^{21}$		
$ N(C_3^{2+}) \approx 10^{22} = 10.000 \times 10^9 \times 10^9 = 10.00 \text{ milliards de milliards (frem D)}$		the state of the s

Notation du OCM: + 1 pt si item D seul coché; 0 pt dans tous les autres cas de figure

OCM 8:

uer des ordres de grandeurs relatifs aux

Compétences exigibles

aines microscopique et macroscopique

Cette formule n'est valable que pour les phases condensées, L'unité SI de la température est le kelvin et pas le celcius L'énergie interne est la somme des énergies cinétiques et potentielles microscopiques ce qui est le cas pour le calcul rénal Item C: Faux Item A: Faux Item B: Vrai

d'énergie interne et la variation de température pour

un corps dans un état condensé

Savoir que l'énergie interne d'un système

Etablir un bilan energétique faisant intervenir

transfert thermique et travail

(compétence transversale)

résulte de contributions microscopiques

macroscopique

S

Connaître et exploiter la relation entre la variation

unité des grandeurs

Compétence transversale:

Compétences exigibles

point

Ŋ

0,2

0,2 0,2 AU = W + Q donc seuls les échanges énergétiques avec l'extérieur comptent pour la variation de U $\Delta U = W + Q$ avec W qui sera négatif (perte) et Q qui sera positif (apport) Item E : Faux

Item D : Faux

Notation du OCM: + 0,2 pt par item correct; - 0,2 pt par item incorrect; note minimale du QCM devant être nulle

PHYSIQUE: EXERCICE 3 (5 points)

QCM 9:	I point
1) Le mouvement s'effectue selon une ligne droite donc il est rectiligne	
2) La vitesse augmente au cours du temps mais de façon non linéaire donc non uniformément	I pt
⇒ le mouvement est donc rectiligne et accéléré de façon non uniforme (item A)	•
Notation du OCM: + 1 pt si item A seul coché; 0 pt dans tous les autres cas de figure	

circulaire uniforme, circulaire non uniforme rectiligne, rectiligne uniformément varié, Définir et reconnaître des mouvements Compétences exigibles

4	
$\overline{}$	
2	
Avril	
9	
-	

Compétences exigibles	Donner les caractéristiques du vecteur accélération pour des mouvements rectiligne, rectiligne uniformément varié, circulaire uniforme, circulaire non uniforme	
I point	I pt	
QCMI0:	Direction et sens du vecteur vitesse : Par définition, il est tangent à la trajectoire et dans le sens du mouvement : ⇒ le vecteur vitesse est donc vertical et orienté vers le bas Direction et sens du vecteur accélération : La trajectoire est rectiligne donc le vecteur accélération est colinéaire à la trajectoire Le mouvement est accéléré donc le vecteur accélération est dans le sens du mouvement	\Rightarrow le vecteur accélération est donc vertical et orienté vers le bas (item D)

Notation du OCM: + 1 pt si item D seul coché; 0 pt dans tous les autres cas de figure

		tar							¥.			E PART		THE PERSON NAMED IN
L		31		No.		HOEBE	ell/s	ulas:	MANUS.		man.			
,	I point	0	4,4	000	0,,4	000	Charlest Articles and		0,2					
										d'energie cinctuque		ure		
	The second secon								inue	matrion		→ pour les items A,B: +0,4 pt si item A seul coché; 0 pt dans tous les autres cas de figure	em incorrect	
	The same of the sa		de frottements		8		augmente		$E_m = E_C + E_{PP}$; lors de la chute : E_m baisse, E_C augmente, E_{PP} diminue	⇒ la diminution d'énergie potentielle doit donc être plus grande que l'augme	No.	coché; 0 pt dans to	→ pour les items C,D,E: + 0,2 pt par item correct; - 0,2 pt par item incorrect	
	The state of the s	aux	La diminution est due à l'existence de la force de frottements		Epp = m.g.z avec z qui diminue lors de la chute		La vitesse augmente donc l'énergie cinétique augmente	Z I AFT	nute: Em baisse, Ec	potentielle doit don		,4 pt si item A seul	0,2 pt par item cor	→ note minimale du OCM devant être nulle
		Item A: Vrai Item B: Faux	on est due à l'ex	ai	avec z qui dimi	iai 🧸	ugmente donc I	xn	PP; lors de la cl	ution d'énergie	OCM:	items A,B:+0,	items C,D,E:+	imale du OCM
11.000	QCMII:	Item A: Vr	La diminution	Item C: Vrai	$E_{PP} = m.g.z$	Item D: Vrai	La vitesse a	Item E: Faux	$E_m = E_C + E$	⇒ la dimin	Notation du OCM:	→ pour les	→ pour les	→ note min

Analyser les transferts énergétiques

Compétences exigibles

au cours d'un mouvement d'un point matériel

QCM 12:	I point	
V _{im} est en m.s ⁻¹ ; m est en kg; g est en m.s ⁻² ; k est en kg.s ⁻¹	,	
\Rightarrow seul l'item D est donc homogene: $V_{\text{lim}} = (\text{mg})/\text{k} \Leftrightarrow \text{m.s}^{-1} = [\text{kg} \times (\text{m.s}^{-2})]/[\text{kg.s}^{-1}]$ (item D)	ı bı	
Notation du OCM: + 1 pt si item D seul coché; 0 pt dans tous les autres cas de figure		

QCMI3:	I point	Com
Soit A le point de départ et B le point d'arrivé, avec AB = H.		
Le travail de la force de frottements est :		Death line
$W = \overline{F_f} \cdot \overline{AB} = F_f \times AB \times \cos(\alpha)$	I pt	d'une force de fr
La force de frottements étant en sens contraire du déplacement AB, l'angle α est donc égal à 180°:		dans le cas c
$W = (kV_{}) \times H \times \cos(180) = -kV_{} H$ (item A)		

Notation du OCM: + 1 pt si item A seul coché; 0 pt dans tous les autres cas de figure

npétences exigibles

Connaître et exploiter les trois lois de Newton

Compétences exigibles

rottements d'intensité constante d'une trajectoire rectiligne l'expression du travail

Organica 1.		Counctonnas ariaibles
Norme de la force de pesanteur : P = m.g	t	Compensation of allicon
<u>Direction et sens de la force de pesanteur :</u> Force verticale et vers le bas	ı	l'expression de la force de pesanteur Compétence de Soconde et de Première S
Expression vectorielle: $\overline{P} = m.g = -m.g.j$	0,5	réutilisée dans les chapitres de Terminale S)
Question 2:		Compétences exigibles
Enoncé textuel de la deuxième loi de Newton : Dans un référentiel galiléen, si un système est soumis à une ou plusieurs forces extérieures, alors la somme vectorielle de ces forces est égale à la dérivée par rapport au temps de son vecteur quantité de mouvement Expression mathématique de la deuxième loi de Newton : $\sum \overline{F}_{ext} = m.\vec{a} \iff \overline{P} = m.\vec{a}$	0,5 (0,1 par mot clé) 0,5	Connaître et exploiter les trois lois de Newton
	A CONTROL OF THE CONT	
Question 3-a:		Compétences exigibles
$\vec{P} = m.\vec{a} \Leftrightarrow -m.g.\vec{j} = m.a_z.\vec{j} \Leftrightarrow a_z = -g$ Question 3-b: L'expression de la vitesse est obtenue par intégration de la relation:	0,5	
$\frac{dr}{dt} = -g$	6,0	Mettre en œuvre la seconde loi de Newton
Résultat de l'intégration : $V_z = -gx + V_z(t = 0)$	0,5	pour étudier des mouvements dans un champ de pesanteur uniforme
Valeur de la coordonnée z de la vitesse à $t = 0$: $V_z(t = 0) = -V_0$	0,5	
Expression finalisée de la coordonnée z de la vitesse en fonction du temps : $V_z = -g t - V_0$	1	
		3

•	1	1
1	-	1
	2	4
	F	Í
	U	2
١	6	٥
	٥	۵
	6	ĺ
	9	Ś
1	7	,

de Physique-Chimie
de Phys
de
preuve

0,5	Mettre en æuvre la seconde loi de Newton pour étudier des mouvements
0,5	dans un champ de pesanteur uniforme

	= 0)	de la position à $t = 0$:	Expression finalisée de la coordonnée z de la vitesse en fonction du temps : $z = -0.5$. $g t^2 - V_0 t + h$
$\frac{dz}{dt} = -gx - V_0$	Résultat de l'intégration: $z = -0.5$. $g t^2 - V_0 t + z(t = 0)$	Valeur de la coordonnée z de la position à $t = 0$: z(t = 0) = +h	Expression finalisée de la coordonnée : $z = -0.5$; $gt^2 - V_0 t + h$

Question 3-c: L'expression de la position est obtenue par intégration de la relation :

CHIMIE: EXERCICE 1 (1 point)

et exploiter des informations sur la catalyse,

Compétences exigibles

notamment en milieu biologique

OCM 14:	I point	
Item A: Vrai	0,2	
Hem B: Vrai	0.2	
c'est la définition d'un catalyseur	760	Extraire e
Item C: Vrai	0.2	
d'après les graphes on voit qu'ils modifient la vitesse de réaction		
Item D: Vrai	0,2	THE STREET STREET, STR
Hem E: Fanx		
à partir d'un certain pH il y a dénaturation du catalyseur, donc la vitesse diminue	7,0	
Notation du OCM: + 0,2 pt par item correct; - 0,2 pt par item incorrect; note minimale du QCM devant être nulle	tre nulle	
CHIMIE: EXERCICE 2 (1-2)	(Jeomit)	
OCM 15:	I point	
Item A: Vrai	00	
car elle possède un pic d'absorption dans le visible	3	
Item B: Faux	0.2	tours
elle absorbe au max à 500 nm donc sa couleur observée est la couleur complémentaire, soit le rouge		of the state of th
Item C: Vrai		
car la concentration en quinonelimine obtenue est elle-meme proportionnelle a la quantite de	7,0	
glucose transforme		
Item D: Vrai	0.2	
UV à 300 nm	Į.	
Item E: Faux	3	
si A = 0,1 d'après la droite d'étalonnage, cela correspond à une glycémie à 3,3 mmol/L donc en	0,2	
légère hypoglycémie		
*** 100 · · · · · · · · · · · · · · · · ·		

Notation du OCM: + 0,2 pt par item correct ; - 0,2 pt par item incorrect ; note minimale du QCM devant être nulle

Exploiter des spectres UV-visibles

Compétences exigibles

Notation du OCM: + 0,4 pt par item correct; - 0,4 pt par item incorrect; note minimale du QCM devant être nulle

nature

Compétences exigibles

nolécule donnée; Associer un groupe caractéristique Identifier les atomes de carbone asymétrique d'une à une fonction dans le cadre de l'IR. Identifier les Utiliser la représentation de Cram. protons équivalents en RMN.

CHIMIE: EXERCICE 5 (2 points)

nnaitre des groupes caractéristiques. Déterminer

Compétences exigibles

a catégorie d'une réaction ; Identifier un site

neur et un site accepteur de doublets d'électrons.

ur une étape d'un mécanisme réactionnel, relier

une flèche courbe les sites donneur et accepteur

vue d'expliquer la formation ou la rupture de

liaisons.

	0.77.0	
<i>QCM 18</i> :	2 points	
Item A: Vrai	0.4	
porté par le carbone 1, de type RCOOR'	0,4	Recon
Item B: Vrai	10	la
La cyclisation entraine la perte d'une molécule d'eau sans gain d'autres atomes	0,4	donne
Item C: Vrai	70	Pour
Le carbone 1 est l'accepteur et le doublet non liant du OH porté par le C5 est le donneur	4,4	par ı
Item D: Faux	10	en
l'inverse	4,0	,
Item E: Faux	10	
Il ya perte d'une molécule d'eau, on la classe donc dans les réactions d'élimination		
Notation du OCM: + 0,4 pt par item correct; - 0,4 pt par item incorrect; note minimale du QCM devant être nulle	e nulle	-

CHIMIE: EXERCICE 6 (2 points)

QCM 19:	2 points
Item A: Vrai	
Elle possède plusieurs fonctions alcool (Taire, IIaire) et une cétone	624
Item B: Faux	
Elle transforme une fonction alcool en fonction acide carboxylique	**S
Item C: Vrai	
Il s'agit d'additionner de l'acétone pour protéger les fonctions alcools qui ne doivent pas réagir	6,4
Item D: Faux	70
Si il était chimiosélectif on n'aurait pas besoin de protéger les autres fonctions alcools	0,4
Item E: Vrai	7
On hydrolyse les fonctions protectrices pour retrouver les fonctions alcools initiales intactes	6,4

Notation du OCM: + 0,4 pt par item correct; - 0,4 pt par item incorrect; note minimale du QCM devant être nulle

Compétences exigibles

Reconnaitre des groupes caractéristiques. Extraire et exploiter des informations sur l'utilisation de réactifs chimiosélectifs, sur la protection d'une fonction, pour mettre en évidence le caractère sélectif ou non d'une réaction.

CHIMIE: EXERCICE 7 (2 points)

QCM 20:	I point	
Item A: Vrai	. 0,2	
Item B: Vrai	0,2	
Item C: Faux	0 0	
Fonction acide carboxylique	7,0	
Item D: Faux	0,2	_
Item E: Vrai		Ď
La fonction principale est celle qui est indiquée en suffixe, la fonction acide carboxylique. La fonction		
cétone (« oxo ») et les fonctions alcool (« hydroxy ») sont des fonctions secondaires, elles apparaissent en	0,2	- 1
suffixe. La fonction cétone est portée par le carbone n°2, les 4 fonctions alcool (« tétra ») sont portées par		
les carbone n°3, 4, 5 et 6.		

Notation du OCM: + 0,2 pt par item correct; - 0,2 pt par item incorrect; note minimale du QCM devant être nulle

QCM 21:		I point	
Item A: Faux			
Seuls les carbones n°3, 4 et 5 sont asymétriques car ils portent 4 substituants différents.		1000	
Le carbone n°6 n'est pas asymétrique car il est relié à 2 atomes d'hydrogène.	Mark of the second		
Item B: Vrai		,	
Elle n'est pas superposable à son image dans un miroir plan	STEIN WARE TO THE STEIN WARE TO THE STEIN WAS TO THE STEI	0.4	
Item C: Faux		c	
Ils sont diastéréoisomères		7.0	
Item D: Vrai		100	
Deux diastéréoisomères ont des propriétés physiques et chimiques différentes		4.0	
Item E: Faux		A COLOR	7
Un mélange racémique est un mélange équimolaire de deux énantiomères	TO THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS	7,0	

Notation du OCM: + 0,2 pt par item correct ; - 0,2 pt par item incorrect ; note minimale du QCM devant être nulle

Compétences exigibles

vour en déterminer les groupes caractéristiques et la nom systématique d'une espèce chimique organique alcools, cétones, acides carboxyliques. Utiliser le Reconnaître les groupes caractéristiques dans les chaîne carbonée.

Compétences exigibles

Reconnaître des espèces chirales à partir de leur représentation.

Identifier les atomes de carbone asymétriques d'une molécule donnée.

représentation, reconnaître si des molécules sont identiques, enantiomères ou diastéréoisomères. A partir d'un modèle moléculaire ou d'une

CHIMIE: EXERCICE 8 (3 points)

r le C n°6 et aucune sur le C n°5 (isomères de constitution) r le C n°6 et aucune sur le C n°5 (isomères de constitution) o,2 la conformation ci-dessous : la conformation el-dessous : la conformation ci-dessous	OCM 22:	I point	Compétences exigibles
n°5 (isomères de constitution) 0,2 n°5 (isomères de constitution) 0,2 0,2	Item A: Faux Ce sont des diastéréoisomères	0,2	
n°S (isomères de constitution) 9,2	Item B: Faux Il y a deux fonctions alcool sur le C n°6 et aucune sur le C n°5 (isomères de constitution)	0,2	01
2°0	Hem C: Faux Il y a deux fonctions alcool sur le C n°6 et aucune sur le C n°5 (isomères de constitution)	0,2	
9,2	Item D: Vrai		
0,2	Isomères de conformation C = projection de Newman de la conformation ci-dessous :		
0.5	НО ОН		
8,2	9		
0,2	(5)	0,2	A partir d'un modèle moléculaire ou d'une
0,2	D = projection de Newman de la conformation ci-dessous:		représentation, reconnaître si des molécules sont identiques, énantiomères ou diastéréoisomères
0,2	Regard HO OH		Extraire et exploiter des informations sur les
0,2	O.IIII		conformations de molecules biologiques, pour mettre en évidence l'innortance de la stéréaisomérie dans la
			nature
	Item E: Vrai		AND CONTRACTOR OF THE PROPERTY
	Isomeres de conformation D = projection de Navamen de la conformation oi doctore.	A CANADA MANAGARA	
	D - projection de newman de la comormation ci-dessous. Ho OH		
	9		
	3	0.2	
Regard HO C4H5O5 Regard (6) C4H5O5 HUM (5) WITH	m H H $ m H$	ļ	
(S) H	HO C4H5O5		
(3)			
	(3)		
НО Н	НО Н		(3)

Notation du OCM: + 0,2 pt par item correct; - 0,2 pt par item incorrect; note minimale du QCM devant être nulle

QCM 23:	2 points	Compétences exigibles
Item A: Vrai C'est la définition des stéréoisomères	0,4	
Item B: Faux Deux stéréoisomères de conformation sont obtenus par simple rotation autour de liaisons simples	0,4	
Item C: Vrai	,	
La conformation de C est décalée, les groupements sont plus éloignés les uns des autres que dans E, qui est éclipsée.	0,4	
Item D: Vrai	0,4	
Item E: Faux Cette courbe n'est valable que pour une molécule dans laquelle les conformations décalées ont même		Extraire et exploiter des informations sur les conformations de molécules biologiques, pour mettre
énergie (0 kJ.mol ⁻¹), et les conformations éclipsées ont même énergie (11,7 kJ.mol ⁻¹). Ici. il v a plus de deux conformations d'énergie différentes :		en évidence l'importance de la stéréoisomérie dans la nature
o ₅ C ₄ H ₅ OH H OH H OH		
Ho-J	0,4	
H H H H		
$\alpha = 0$; E_1 $\alpha = 60^{\circ}$; E_2 $\alpha = 120^{\circ}$; E_3	4	
Notation du OCM: + 0,4 pt par item correct; - 0,4 pt par item incorrect; note minimale du QCM devant être nulle	e nulle	
	The state of the s	
		The second secon

Quarton 1.		
нон ₂ С—(снон) ₃ —С—соон — нон ₂ С—(снон) ₃ —С—соо + Н		Utillise
	THE E	des r
Question 2:		
pH ≤ pK _A donc l'espèce prédominante est l'acide ascorbique	7	Identifi base con
Question 3:		
$AH + OH \rightarrow A' + H_2O$	0,5	Etablir
Question 4a):		
Méthode des tangentes	0,5	
Ouestion 4b):		
V = 14 mL; $pH = 8.5$	0,5	Pro déterm par t
Question 5a) :		
Méthode $1 : n_A = c_B \cdot V = 0.2 \times 14.10^{-3} = 2.8.10^{-3} \text{ mol}$		Maritain
Méthode 2 : $c_A.V_A = c_B.V \Rightarrow c_A = c_B.V/V_A = 0.2 \times 14.10^{-3}/100.10^{-3} = 2.8.10^{-2} \text{ mol.L}^{-1}$ Puis $n_A = c_A.V_A = 2.8.10^{-3} \text{ mol}$	I	Mairise
Question 5b):		
$m_A = n_A \times M = 2.8.10^{-3} \times 176 = 0.49 \text{ g}$	0,5	Maîtrise

	Compétences exigibles
	Utiliser les symbolismes \rightarrow , \leftarrow , $\stackrel{\leftarrow}{\leftarrow}$, dans l'écriture
	des réactions chimiques pour rendre compte des situations observées
	Compétences exigibles
	Identifier l'espèce prédominante d'un couple acide- base connaissant le pH du milieu et le pK, du couple.
	Compétences exigibles
	Établir l'équation de la réaction support de titrage à
1	partir d'un protocole experimental.
	Compétences exigibles
	(Repérage de l'équivalence
	pour un titrage pH-métrique)
The same of	Compétences exigibles
	Pratiquer une démarche expérimentale pour
	déterminer la concentration d'une espèce chimique
	par titrage par le suivi d'une grandeur physique
	Compétences exigibles
	Maitriser l'usage des chiffres significatifs et l'ecriture
	scientifique.
	Compétences exigibles
	Maîtriser l'usage des chiffres significatifs et l'écriture
	scientifiane
7	

Correction Sujet principal Sciences et Vie de la Terre 2014

Exercice 1 : connaissances générales 5,5 soit 0,5 point par question

Question 1 : BD Question 2 : BC

Question 3: CD

Question 4: CE

Question 5 : ACE

Question 6: CE

Question 7 : CE

Question 8 : BCE

Question 9: ABC

Question 10 : BDE

Question 11 : ADE

Exercice 2: Immunité 4 points soit 0,5 point par question

Question 12: ABCE

Question 13: BCE

Question 14 : AD

Question 15: BCD

Question 16 : BCD

Question 10 . BC

Question 17: AC Question 18: DE

Question 19: BE

Exercice 3: Phylogénie 1,5 points soit 0,5 point par question

Question 20 : ACE

Question 21: D

Question 22: ACE

Exercice 4: Géologie 2,5 points soit 0,5 point par question

Question 23: ACD

Question 24 : ABCD

Question 25 : ABDE

Question 26: CE

Question 27: AB

Exercice 5:

6,5	points	
	1) C'est la différence de potentiel entre le milieu extracellulaire et le milieu intracellulaire.	0.25
	 il s'agit du potentiel de repos. Il est égal à -60mV, il est constant tant qu'aucun mouvement de cils n'est observé. 	0.25 + 0,25 on accepte aussi il est = à -60mV au repos
Le properties de la constant de properties de la constant de la co	sinceau de cils est déplacé dans le sens 1, on enregistre une variation de potentiel de nV à -45mV, il s'agit d'une dépolarisation. 0,25 pour 11 ou l'autre sinceau de cils est déplacé 2 fois dans le sens 1, la dépolarisation atteint -38mV, ur seuil de la dépolarisation, puis dépolarisation rapide jusqu'à +5mV suivie d'une clarisation, il s'agit d'un potentiel d'action. Sinceau de cils est déplacé dans le sens 2, la variation de potentiel membranaire de de -60mV à -70mV, c'est une hyperpolarisation	0.25 pour dépolarisation 0.25 pour la description 0,25 pour le PA identifié 0,25 hyperpolarisation

4)	En fonction du signal, la cellule déclenche une réponse différente (idée) En fonction de <u>l'intensité</u> et de la <u>qualité</u> du stimulusou La cellule traduit un <u>stimulus mécanique</u> en <u>message nerveux</u>	0.25 x 2
5)	On peut supposer que les ions Na+ interviennent dans la genèse de la dépolarisation, ou on accepte aussi dans la genèse du message nerveux	0.25
6)	Un schéma doit mettre en évidence le tracé d'un PA (sans détail car déjà noté) on attend abscisse et ordonné avec un titre une durée de l'ordre de 2 msec et de -70 à +30 mV. schéma au bon grossissement « lisible »	0,5 car déjà dessiné sur le doc (1 titre 0,25 le tracé 0,25)
8)	par une variation de fréquence des PA : augmentation du stimulus dans le sens 1 → augmentation de la fréquence de PA stimulus dans le sens 2 → diminution de la fréquence des PA Le PA est un message répondant à la loi du tout ou rien, son amplitude est constante dans un milieu donné et l'intensité du stimulus est codée en fréquence le traitement d'un chat sourd à la naissance permet de modifier la morphologie de la synapse, on revient à une synapse normale observée chez un chat normo- entendant, il s'agit de plasticité arrivée d'un PA sur le neurone en provenance des cils → libération des vésicules synaptiques dans la fente synaptique → le neurotransmetteur se fixe sur les récepteurs spécifiques situés sur la membrane postsynaptique → atteinte du potentiel seuil→ genèse d'un PA dans le neurone suivant - L'étape déterminante est la libération des NT - S'ils se fixent sur les récepteurs postsynaptiques le message est ainsi recréé et la morphologie de la membrane postsynaptique revient à la normale	0,25 sens 1 0.25 sens 2 0.25 x 3 0.25 + 0,25 0,25 + 0,25

CONCOURS 2014 D'ADMISSION DANS LES ECOLES DU SERVICE DE

SANTE DES ARMEES

CATEGORIE BACCALAUREAT - Sections : Médecine - Pharmacie

EPREUVE DE MATHEMATIQUES

Avril 2014

Avertissement:

- L'utilisation de calculatrice, de règle de calcul, de formulaire et de papier millimétré n'est pas autorisée.
- Il ne sera pas fait usage d'encre rouge.
- Il sera tenu compte de la qualité de la présentation des copies et de l'orthographe.
- Les candidats traiteront les trois exercices.
- Les réponses des exercices n°1 et n°2 (QCM) seront données sur une grille prévue à cet effet.
- L'exercice n° 3 sera traité sur une copie à part.

Correction

Exercice 1:

	Α	В	С	D
QCM1				Х
QCM2			X	
QCM3	Х			
QCM4				X
QCM5			X	
QCM6		Х		
QCM7		X		

Exercice	2:				A CONTRACTOR OF THE PROPERTY O	O CONTRACTOR OF THE PROPERTY O
		A		B PROPERTY.	C	D
QCM1	Name and	CONTRACTOR		OF THE PERSON NAMED IN COLUMN 1	X	Salar
QCM2	Salarina de la companya de la compan	MACONIN.			X	Carried States
QCM3		The same of the sa	Van de plante			X
QCM4	- Automate				X	
QCM5						X
QCM6						X
QCM7		_			Х	

Exercice 3

1)
$$P(X_A \le 10) = \int_0^{10} 0.22e^{-0.22x} dx = [-e^{-0.22x}]_0^{10} = -e^{-2.2} + e^0 \approx 1 - 0.111 \approx 0.889$$

2)
$$S_A(t) = P(X_A > t) = 1 - P(X_A \le t) = 1 - \int_0^t 0.22e^{-0.22x} dx = 1 - [-e^{-0.22x}]_0^t$$

 $S_A(t) = 1 - (-e^{-0.22t} + e^0) = 1 + e^{-0.22t} - 1 = e^{-0.22t}$.

3) Pour $t \ge 0$, $S_A'(t) = -0.22e^{-0.22t} < 0$ car une exponentielle est toujours positive. Donc la fonction S_A est décroissante sur $[0;+\infty[$.

 $\lim_{t\to+\infty} S_A(t) = 0 \operatorname{car} \lim_{t\to+\infty} (-0.22t) = -\infty \operatorname{et} \lim_{u\to-\infty} e^u = 0.$

t	0 +	-00
$S'_{A}(t)$	_	
$S_A(t)$	1——————————————————————————————————————	
		0

4)
$$S_8(10) = e^{-0.11 \times 10} = e^{-1.1} = (e^{-2.2})^{1/2} = \sqrt{0.111} \approx 0.333$$

5)
$$S_A(5) = e^{-0.22 \times 5} = e^{-1.1} = (e^{-2.2})^{1/2} = \sqrt{0.111} \approx 0.333$$

- 6) Pour t réel, $\frac{S_A(t)}{S_B(t)} = \frac{e^{-0,22t}}{e^{-0,11t}} = e^{-0,11t}$. Donc le rapport des probabilités de survie des traitements A et B n'est pas constant.
- 7) Pour t réel, $S_A(t) = [S_B(t)]^2$