Exercice 1

Partie A.

- 1. Puisque E et f sont les milieux respectifs des côtés [AB] et [CD] du carré ABCD donc (EF)est parallèle à (AD); on en déduit que AEFD est un parallélogramme et comme l'angle $(E\widehat{AD})$ est droit AEFD est un rectangle.
- 2. On remarque une configuration de Thalès:
 - * les points A, O et C sont alignés dans cet ordre,
 - * les points D, F et C sont alignés dans cet ordre,
 - * les droites (AC) et (DC) se coupent en C.

Or les droites (OE) et (AD) sont parallèles donc, d'après le théorème de Thalès : $\frac{OC}{AC} = \frac{CF}{CD}$. Autrement dit : $\frac{OC}{AC} = \frac{1}{2}$.

On en déduit que O est le milieu de [AC].

D'après ce même théorème on a encore : $\frac{OF}{AD} = \frac{CF}{CD}$. Donc : 2OF = AD. Or AD = EF puisque AEFD est un rectangle, donc 2OF = EF. Ainsi O est le milieu de EF.

- 3. O est aussi le milieu de [DB] car ABCD est un carré. Donc (DE) et (AO) sont des médianes du triangle ABD. Donc O est le centre de gravité de ABD et donc AG = 2GO. Autrement $dit: \frac{AG}{GO} = 2.$
- 4. (AO) est une médiane du triangle AEF or G est un point du segment [AO] et situé au deux tiers de la médiane, d'après la question précédente, donc G est le centre de gravité du triangle AEF.

Partie B.

- 1. L'aire du triangle, rectangle en E, AEO est : $A(AEO) = \frac{1}{2} \times AE \times EO = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$
- 2. Si l'on note H le projeté orthogonal de E sur (AO) on remarque d'une part que l'aire de AOGest $\mathcal{A}(AOG) = \frac{1}{2} \times EH \times AG$ et d'autre part que l'aire de EGO est $\mathcal{A}(AEG) = \frac{1}{2} \times EH \times GO$. Comme AG = 2GO on en déduit : $\mathcal{A}(AOG) = 2\mathcal{A}(EGO)$. Finalement : $\mathcal{A}(AEG) = \frac{2}{3}\mathcal{A}(AEO) = \frac{2}{24}$ et $\mathcal{A}(EOG) = \frac{1}{3}\mathcal{A}(AEO) = \frac{1}{24}$.

3. • On a : $\mathcal{A}(DAG) = \mathcal{A}(AED) - \mathcal{A}(AGE)$.

Calculons $\mathcal{A}(AED)$.

Le triangle $\stackrel{\frown}{AED}$ est rectangle en A donc $\mathcal{A}(AED) = \frac{1}{2} \times AE \times AD = \frac{1}{2} \times \frac{1}{2} \times 1 = \frac{1}{4}$. Finalement : $\mathcal{A}(DAG) = \frac{1}{4} - \frac{2}{24} = \frac{2}{12} = \frac{1}{6}$.

• $\mathcal{A}(OFDG) = \mathcal{A}(AEFD) - \mathcal{A}(DAG) - \mathcal{A}(AEO) = \frac{1}{2} - \frac{1}{6} - \frac{1}{8} = \frac{5}{24}$.

Exercice 2

1.
$$K(5294) = 9542 - 2459 = 7083$$

$$K(7083) = 8730 - 378 = 8352$$

$$K(8352) = 8532 - 2358 = 6174$$

$$K(6174) = 7641 - 1467 = 6174$$

Donc l'algorithme appliqué au nombre 5294 conduit à l'entier p = 6174 pour lequel K(6174) =6174.

2. (a) Puisque 0 < a < b < c on a :

$$K(m) = \overline{cba} - \overline{abc} = 100.(c - a) + a - c = (c - a).99$$

Donc m est un multiple de 99.

(b) Le nombre K(m) est un multiple de 99. Par construction c'est même $\alpha \times 99$ avec $2 < \alpha \le 9$ en notant $\alpha = c - a$. Le nombre K(m) et donc pris parmi :

$$99 \times 2 = 198$$

 $99 \times 3 = 297$
 $99 \times 4 = 396$
 $99 \times 5 = 495$
 $99 \times 6 = 594$
 $99 \times 7 = 693$
 $99 \times 8 = 792$
 $99 \times 9 = 871$

Montrons que l'algorithme appliqué à chacun de ces nombres conduit à 495.

Pour 198:

$$K(198) = 981 - 189 = 792$$

 $K(792) = 972 - 279 = 693$
 $K(693) = 963 - 369 = 594$
 $K(594) = 954 - 459 = 495$

Pour 297:

$$K(297) = 972 - 279 = 693$$

 $K(693) = 963 - 369 = 594$
 $K(594) = 954 - 459 = 495$

Pour 396:

$$K(396) = 963 - 369 = 594$$

 $K(594) = 954 - 459 = 495$

Pour 495 c'est immédiat.

Pour 594 :

$$K(594) = 954 - 459 = 495$$

Pour 693:

$$K(693) = 963 - 369 = 594$$

 $K(594) = 954 - 459 = 495$

Pour 792:

$$K(792) = 972 - 279 = 693$$

 $K(693) = 963 - 369 = 594$
 $K(594) = 954 - 459 = 495$

Pour 871:

$$K(871) = 871 - 178 = 693$$

 $K(693) = 963 - 369 = 594$
 $K(594) = 954 - 459 = 495$

Donc l'algorithme appliqué au nombre m conduit à 495 en cinq itérations au plus.

3 Exercice

1. Une réduction de 25% correspond à un coefficient multiplicateur de $\frac{3}{4}$. Si seuls deux des trois pantalons sont payés alors le coût d'un pantalon est $\frac{2}{3}$ du coût hors

Or $\frac{3}{4} \ge \frac{2}{3}$, donc la réduction la plus importante est obtenue avec la promotion sur les pantalons. Le client a donc tord de vouloir utiliser sa carte de fidélité.

- 2. (a) Si les pantalons coûtent respectivement 2 et 2 et 1, alors on paye les pantalons au trois quart de leur prix avec la carte et au quatre cinquième avec la promotion sur les pantalons. Dans ce cas le client a intérêt à utiliser sa carte de fidélité.
 - (b) Si les pantalons coûtent respectivement 100 et 101 et 102, alors on paye les pantalons au trois quart de leur prix avec la carte et à $\frac{201}{303} = \frac{67}{101}$ du prix d'origine avec la promotion sur les pantalons. Dans ce cas le client a intérêt à utiliser la promotion car $\frac{67}{101} \leq \frac{3}{4}$.
 - (c) Le prix des pantalons avec la promotion est multiplier par : $\frac{p_2+p_3}{p_1+p_2+p_3}$. Avec la carte de fidélité le prix des pantalons est multiplié par $\frac{3}{4}$ donc pour que la carte de fidélité soit plus intéressante il faut que : $\frac{p_2+p_3}{p_1+p_2+p_3} \geq \frac{3}{4}$. Autrement dit : $p_2+p_3 \geq 3p_1$. On vérifie aisément que cette condition est suffisante.

Le client a intérêt à utiliser sa carte de fidélité si et seulement si $p_2 + p_3 \ge 3p_1$.