Exercice 1

1. a)

$$\begin{cases} C_1 \in [AB] \\ BC_1 = 2.AC_1 \end{cases} \Rightarrow 2.\overrightarrow{AC_1} = \overrightarrow{C_1B}$$

 $\begin{cases} C_1 \in [AB] \\ BC_1 = 2.AC_1 \end{cases} \Rightarrow 2.\overrightarrow{AC_1} = \overrightarrow{C_1B}$ Or : $\overrightarrow{C_1B} = \overrightarrow{C_1A} + \overrightarrow{AB}$, d'après la relation de Chasles, et donc : $(2+1)\overrightarrow{AC_1} = \overrightarrow{AB}$.

Ainsi : $\overrightarrow{AC_1} = \frac{1}{3} . \overrightarrow{AB}$. Donc : $AC_1 = \frac{1}{3} . AB = \frac{1}{3} \times 6 = 2$ cm.

b) Puisque le cas précédent est exclue $(C_2 \neq C_1)$, nécessairement : $\overrightarrow{BC_2} = 2.\overrightarrow{AC_2}$. Autrement dit A est le milieu du segment $[C_2B]$. Donc $AC_2 = AB = 6$ cm.

c)

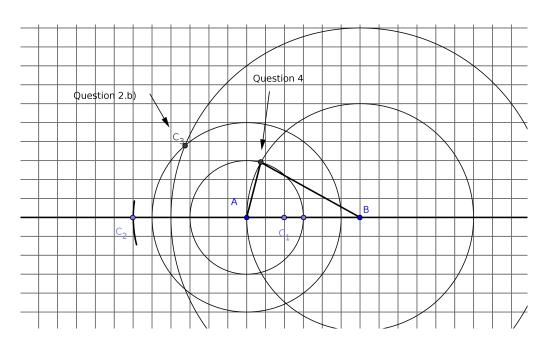


FIGURE 1 – Figure illustrant tout l'exercice.

(a) Montrons grâce à un raisonnement par l'absurde que x = 9 est impossible. Supposons construit un triangle dont les dimensions sont AB = 6, AC = x = 9 et BC = 18. Or on dispose de l'inégalité triangulaire : $BC \leq AC + AB$ et donc : $18 \leq 6 + 9 = 15$ ce qui est impossible.

On a donc montré par l'absurde qu'un tel triangle ne peut être construit.

(b) De façon plus générale on pourra construire un triangle ABC vérifiant 2x = 2.AC = BCsi et seulement si les trois inégalités triangulaires suivantes sont vérifiées:

$$\begin{cases} 6 \le x + 2x \\ x \le 6 + 2x \\ 2x \le 6 + x \end{cases}$$

Ce qui équivaut, la seconde inégalité étant trivialement toujours vraie, à : $2 \le x \le 6$. Ainsi le triangle ABC ne sera constructible que si $x \in [2, 6]$. On peut d'après les questions précédentes exclure les bornes de l'intervalle qui correspondent à des triangles aplatis et

donc à des cas pour lesquels $C \in (AB)$: $x \in]2;6[$. Donc, en particulier, on peut construire le triangle ABC pour x = 5cm.

- 3. D'après le théorème de Pythagore ABC est rectangle en C si et seulement si : $AB^2 = AC^2 +$ BC^2 . Cette dernière égalité peut encore s'écrire : $x^2 = \frac{36}{5}$. Comme $x \ge 0$: $x = \frac{6}{5}\sqrt{5}$.
- 4. $x = 2x \Leftrightarrow x = 0$ et comme $x \neq 0$ on en déduit que, soit x = 6, soit 2x = 6. Puisque le cas x=6 est à exclure $(C \notin (AB))$ nécessairement x=3.

Réciproquement le triangle est effectivement constructible pour x=3 et il est alors isocèle en B

2 Exercice

- 1. a) $20cL = 2dL = 2dm^3$. La brique a pour base un rectangle de dimensions 0,4dm et 0,6dm. Donc: $h = \frac{2}{0.4 \times 0.6} \simeq 8,33dm$.
 - b) Le prix d'un litre de jus est : $\frac{2,89}{6\times0,2} \simeq 2,41$ €.
 - c) Calculons le prix au litre pour chaque option :
 - option A Le coefficient multiplicateur correspondant à un baisse de 30% est 0,70. Le nouveau prix du lot est donc de : $2,89 \times 0,70 = 2,023 \in$. On en déduit le prix au litre : $\frac{2,023}{6\times0.2} = 1,69 \in$.
 - option B Puisque deux briques sont rajoutées le volume de jus dans un lot est, en litres, de : $8 \times 0, 2 = 1, 6$. Donc le prix au litre est : $\frac{2,89}{1.6} \simeq 1,81 \in$.

C'est donc l'option A qui donne le prix au litre le moins élevé.

- 2. a) Si la TVA est de 5,5% le prix hors taxe a été multiplié par 1,055. En notant x le prix hors taxe on a : $x \times 1,055 = 42,55$; et donc : $x = \frac{42,55}{1.055} \simeq 40,33 \in$.
 - b) En D2 on entre la formule : =B2/1,055. Et en D3 : =B3/1,196.

3 Exercice

- 1. (a) Développons l'expression A(x) proposée : $A(x) = x^2 1 (x^2 2^2)$ en usant d'une identité remarquable. Puis réduisons cette expression : A(x) = 3.
 - (b) D'après la question précédente : A(296) = 3, autrement dit : $297 \times 295 298 \times 294 = 3$.
- 2. Soient a et b deux entiers consécutifs. Supposons par exemple : b = a + 1. Alors : $b^2 a^2 = (a+1)^2 a^2 = 2a + 1 = (a+1) + a = b + a$. Seule la propriété 2 est exacte.