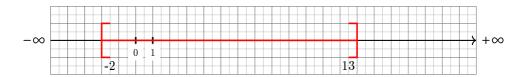
Intervalles.

Un intervalle est un sous-ensemble (une partie) "sans trous" de l'ensemble des nombres réels \mathbb{R} .

Dans ce qui suit nous admettrons que l'ensemble de tous les nombres que nous appelons les nombres réels et notons \mathbb{R} , peut être représenté par un axe gradué que nous appellerons *la droite des réels*.

Avec cette représentation les intervalles peuvent être vus comme des droites, demi-droites ou segments.


I Intervalles bornés.

Les intervalles bornés sont les ensembles qui contiennent tous les réels qui sont compris entre deux *bornes* (limites).

L'intervalle $[-2 \ 13]$ (lisez « fermé en -2 et fermé en 13 ») désigne l'ensemble des nombres réels x compris entre -2 et 13. Ce sont donc tous les nombres x qui vérifient

$$-2 \le x \le 13$$

L'ensemble des nombres réels est représenté par une droite et l'intervalle [-2; 13] est alors représenté par un segment.

Il arrive souvent qu'en cherchant à optimiser la taille des intervalles il faille exclure les valeurs aux bornes. Ainsi pour désigner l'ensemble de tous les nombres compris entre -2 et 13 mais pas 2 nous noterons :]-2; 13] (lisez « ouvert en -2 et fermé en 13 »).

Ce qui correspond à tous le nombres x qui vérifient l'encadrement

$$-2 < x \le 13$$

Remarques.

- 1. Pour dire qu'un nombre a est compris entre 3 et 4 nous écrirons : $a \in [3,4]$ et nous dirons que x appartient à l'intervalle [3;4].
- 2. Les bornes d'un intervalle sont toujours écrites dans l'ordre croissant.
- 3. L'ensemble vide, Ø, qui ne contient aucun élément est considéré comme un intervalle.

Exercice 1. •

Le tableau suivant comporte quatre façons, et donc quatre points de vus, pour parler d'une même notion.

Recopiez-le, puis complétez-le en prenant pour modèle la deuxième ligne.

Notation	Représentation	Inéquations (encadre- ment)	Description
$x \in [-2; 13]$	$-\infty$ $\xrightarrow{}$ $+\infty$ -2 13	$-2 \le x \le 13$	Intervalle fermé en -2 et en 13.
$x \in [4 ; 8[$			
	$-\infty \xrightarrow{} +\infty$ $-12 -5$		
		$\pi \le x < 8$	
			Intervalle ouvert en -6 et fermé en 2.

II Intervalles non bornés.

Les intervalles non bornés sont les intervalles qui contiennent tous les nombres plus grands ou plus petits qu'un nombre fixé.

L'intervalle [$-2+\infty$ [(lisez « fermé en -2 , plus l'infini ») désigne l'ensemble des nombres réels x supérieurs (ou égaux) à -2. Ce sont donc tous les nombres x qui vérifient

$$-2 \le x$$

L'intervalle [-2; $+\infty$ [est alors représenté par une demi-droite.

Remarques.

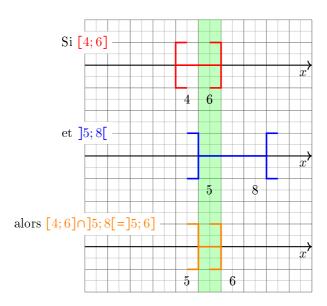
1. Le symbole ∞ désigne l'infini et n'est pas un nombre réel. C'est pourquoi le crochet est toujours ouvert du côté de ce symbole.

Exercice 2. ♥

Le tableau suivant comporte quatre façons, et donc quatre points de vus, différents pour parler d'une même notion.

Recopiez-le, puis complétez-le en prenant pour modèle la deuxième ligne.

Notation	Représentation	Inéquations (encadre- ment)	Description
$x \in [-2, +\infty[$	$-\infty \xrightarrow{-1} +\infty$	$-2 \le x$	Intervalle fermé en -2, plus l'infini.
$x \in]-\infty; 8[$			
	$-\infty \xrightarrow{1} +\infty$ -12		
		$x < \pi$	
			Intervalle moins l'infini, ouvert en -6.

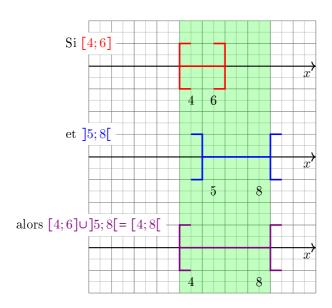

III Réunion et intersection.

Définition 1

L'intersection de deux ensembles A et B, qu'on note $A\cap B$, est l'ensemble de tous les éléments commun à l'ensemble A et l'ensemble B.

Ainsi 5,5 appartient à l'intersection des intervalles [4;6] et]5;8[puisque 5,5 appartient à chacun d'entre eux.

Pour déterminer l'intersection tout entière de [4;6] et]5;8[nous raisonnerons de façon géométrique comme ci-dessous :



Définition 2

La *réunion* de deux ensembles A et B, qu'on note $A \cup B$, est l'ensemble de tous les éléments de l'ensemble A et l'ensemble B.

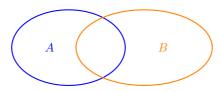
Ainsi 5,5 et 4,5 et 7 appartiennent à la réunion des intervalles [4;6] et]5;8[puisqu'ils appartiennent soit à l'un, soit à l'autre, soit aux deux intervalles.

Pour déterminer la réunion tout entière de [4;6] et]5;8[nous raisonnerons de façon géométrique comme ci-dessous :

Exercice.

Exercice 3.

Simplifiez les écritures suivantes en justifiant par un schéma.


- 1. $[-3; 4[\cup] 1; 5[$
- 2. $]-1;3]\cap]2;4]$
- 3. $]-3;2] \cup [3;5]$
- 4.] -13;7] \cap [7;17]

- 5. $]-12;-11[\cap[-11;-3[$
- 6. $]-\infty;5] \cap [3;7[$
- 7.] $-\infty$; 0] \cup [0; $+\infty$ [

Exercice 4. Recherche.

Le cardinal d'un ensemble fini A, qu'on note |A| ou Card(A) ou #(A), désigne le nombre d'éléments dans cet ensemble.

En vous aidant du diagramme de Venn ci-dessous déterminez une égalité liant |A|, |B|, $|A \cap B|$ et $|A \cup B|$.

Exercice 5. Application.

Exercices 137 à 145 page 71 du manuel Déclic.

Exercice 6. Application.

Exercices 161 à 165 page 72 du manuel Déclic.

Exercice 7.

Le complémentaire d'un ensemble de nombres A est l'ensemble de tous les nombres qui ne sont pas dans A. Par exemple le complémentaire de $]-\infty;5[$ est l'ensemble $[5;+\infty[$. Exercices 166 à 168 page 72.

Exercice 8. Application.			
Complétez le tableau	ı ci-dessous (les schémas	ne doivent pas	être à l'échelle).
Notation	Scháma	Inéquation(s)	Description

Notation	Schéma	Inéquation(s)	Description
$x \in]-2 ; +\infty[$			
	$\begin{array}{c c} & & & \\ \hline & & \\ 5 & 8 & \end{array} $		
		$-3 < x \le 4$	
			Intervalle ouvert en -5 et fermé en 7.

Exercice 9. Application.

Simplifiez si possible l'écriture des ensembles ci-dessous en justifiant sinon récrivez l'expression proposée.

- 1. $I_1 =]-13;4] \cap [3;8[$
- 2. $I_2 =]-\infty; 5] \cap]3; 4[$
- 3. $I_3 =]-2;2] \cup [3;4]$