Résoudre un système d'équations.

I Généralités.

Un *système d'équations* est un groupe d'équations utilisant les mêmes inconnues. Résoudre un système d'équations c'est trouver toutes les solutions qui satisfont simultanément *toutes* les équations.

Nous résoudrons quasi uniquement des systèmes d'équations linéaires (ou affines) de deux équations à deux inconnues

$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$$

où x et y sont des inconnues (ou variables) et a_1 , b_1 , a_2 , b_2 des nombres réels fixés. Les solutions d'un tel système sont des couples (une valeur pour x et une valeur pour y). Un tel système peut n'avoir aucune, une seule (i.e. un couple) ou une infinité de solutions.

II Résolution par combinaisons linéaires.

Cette méthode, qui est la plus générale, est aussi la plus abstraite.

Proposition 1

Les règles de calculs sur les équations d'un système qui conservent les systèmes équivalents sont :

- (i) multiplier une équation par un nombre réel non nul,
- (ii) remplacer une équation par la somme des deux autres équations.

Démonstration 1

Remarques.

- 1. Ces règles complètent les règles vues pour manipuler une équation.
- 2. Grâce à ces règles de calculs il est possible d'isoler les inconnues et de résoudre le système d'équations linéaires du premier degré.
- 3. Les deux règles précédentes sont parfois regroupées en disant que les *combinaisons linéaires* sur les lignes sont autorisées.
- 4. Ces règles sont aisées à programmer et permettent de rédiger un algorithme de résolution de système appelé *méthode du pivot de Gauss* ou *élimination de Gauss-Jordan*.

Exemples.

1. On souhaite résoudre le système avec l'algorithme du pivot de Gauss.

$$\begin{cases} 4x - 2y = 24 \\ 2x + 4y = 2 \end{cases}$$

Transformer les équations pour avoir le coefficient de x égale à 1. On dit que x est le pivot.

On supprime le pivot de la seconde équation.

$$\begin{cases}
x - \frac{1}{2}y = 6 \\
2y + \frac{1}{2}y = 1 - 6
\end{cases}$$

$$\begin{cases}
x - \frac{1}{2}y = 6 \\
\frac{5}{2}y = -5
\end{cases}$$

$$\begin{cases}
x - \frac{1}{2}y = 6 \\
\frac{5}{2}y = -5
\end{cases}$$

$$\begin{cases}
x - \frac{1}{2}y = 6 \\
\frac{2}{5} \times \frac{5}{2}y = \frac{2}{5} \times (-5)
\end{cases}$$

$$\begin{cases}
x - \frac{1}{2}y = 6 \\
y = -2
\end{cases}$$

$$\begin{cases}
x - \frac{1}{2}y = 6 \\
y = -2
\end{cases}$$

$$\begin{cases}
x - \frac{1}{2}y = 6 \\
y = -2
\end{cases}$$

$$\begin{cases}
x - \frac{1}{2}y = 6 \\
y = -2
\end{cases}$$

$$\begin{cases}
x - \frac{1}{2}y + \frac{1}{2}y = 6 + \frac{1}{2} \times (-2) \\
y = -2
\end{cases}$$

$$\begin{cases}
x - \frac{1}{2}y + \frac{1}{2}y = 6 + \frac{1}{2} \times (-2) \\
y = -2
\end{cases}$$

L'ensemble des solutions du système est donc : $\mathcal{S} = \{(5, -2)\}.$

2. On souhaite résoudre le même système toujours avec des combinaisons linéaires mais sans suivre d'algorithme particulier.

$$L_{1} - 2L_{2} \to L_{1}$$

$$\begin{cases}
 - 10y &= 20 \\
 2x &+ 4y &= 2
\end{cases}$$

$$-\frac{1}{10}L_{1} \to L_{1}$$

$$\begin{cases}
 y &= -2 \\
 2x &+ 4y &= 2
\end{cases}$$

$$L_{2} - 4L_{1} \to L_{2}$$

$$\begin{cases}
 y &= -2 \\
 2x &= 10
\end{cases}$$

$$\begin{cases}
 y &= -2 \\
 x &= 5
\end{cases}$$

Exercice 1.

Résolvez les systèmes :

$$(S_1): \left\{ \begin{array}{l} 3x+2y=2 \\ x+y=1 \end{array} \right., (S_2): \left\{ \begin{array}{l} -x+3y=19 \\ 4x-y=1 \end{array} \right., (S_3): \left\{ \begin{array}{l} 5x+2y=12 \\ -3x+4y=-2 \end{array} \right.$$

Correction exercice 1

Résolvons le système (S_1) .

Le système (S_1) équivaut successivement à :

$$\begin{array}{lll} \frac{1}{3}L_1\to L_1 & \left\{\begin{array}{lll} x & + & \frac{2}{3}y & = & \frac{2}{3} \\ x & + & y & = & 1 \end{array}\right. \\ \text{Nous avons utilis\'e la propriét\'e}\left(i\right) \text{ de la proposition ci-dessus}. \end{array}$$

$$\begin{cases} x + \frac{2}{3}y = \frac{2}{3} \\ \frac{1}{3}y = \frac{1}{3} \end{cases}$$
 Nous avons utilisé la propriété (ii) de la proposition ci-dessus.

Nous avons utilisé la propriété (i) de la proposition ci-dessus.

$$L_1 - \frac{2}{3}L_1 \to L_1 \qquad \qquad \left\{ \begin{array}{rcl} x & = & 0 \\ & y & = & 1 \end{array} \right.$$

Nous avons utilisé les propriétés (i) et (ii) de la proposition ci-dessus combinées.

L'ensemble des solutions de (S_1) est donc : $\mathscr{S} = \{(0,1)\}.$

Résolution par substitution. III

Dans le cas particulier d'un système linéaire de deux équations à deux inconnues nous utiliserons la méthode par substitution.

$$\begin{cases} a_1x + b_1y = c_1 & (1) \\ a_2x + b_2y = c_2 & (2) \end{cases}$$

Méthode de résolution :

Étape 1 isoler x dans la première équation (1) et l'exprimer en fonction de y,

Étape 2 substituer à x son expression en fonction de y dans l'équation (2),

Étape 3 résoudre l'équation du premier degré d'inconnue y ainsi obtenue.

— si l'équation d'inconnue y admet une solution en réinjectant cette valeur dans l'expression de x obtenue à l'étape 2 nous obtenons la valeur de y,

- si nous ne trouvons pas de solution pour y alors le système n'admet pas de solutions.
- si nous trouvons une infinité de valeurs (\mathbb{R}) pour y, alors une infinité de couple est solution.
- conclure après avoir calculer la valeur de y.

Exemples.

1.

Exercice 2.

Résolvez les systèmes :

$$(S_1)$$
 $\begin{cases} 9x + 3y = 2 \\ -2x + y = 1 \end{cases}$, (S_2) $\begin{cases} 2x + 8y = 12 \\ \frac{1}{2}x + 2y = 3 \end{cases}$, (S_3) $\begin{cases} y - 3x = 2 \\ -6x + 2y = 14 \end{cases}$

Correction exercice 2

Résolvons (S_1) .

Notons

$$(S_1)$$
 $\begin{cases} 9x + 3y = 2 & (E_1) \\ -2x + y = 1 & (E_2) \end{cases}$

Étape 1. Isolons y dans (E_2) .

$$(E_2) \Leftrightarrow -2x + y + 2x = 1 + 2x$$

 $\Leftrightarrow y = 2x + 1$

Étape 2. Substituons à y son expression en fonction de x dans (E_1) .

$$(E_1) \Rightarrow 9x + 3(2x + 1) = 2$$

Développons, ordonnons puis réduisons

$$(E_1) \Rightarrow 9x + 3 \times 2x + 3 \times 1 = 2$$
$$\Rightarrow 9x + 6x + 3 = 2$$
$$\Rightarrow 15x + 3 = 2$$

Étape 3. Résolvons cette équation linéaire de degré un en isolant l'inconnue x.

$$15x + 3 = 2 \Leftrightarrow 15x + 3 - 3 = 2 - 3$$

$$\Leftrightarrow 15x = -1$$

$$\Leftrightarrow \frac{15x}{15} = \frac{-1}{15}$$

$$\Leftrightarrow x = -\frac{1}{15}$$

Étape 4. Calculons y.

Remplaçons x par la valeur numérique trouvée précédemment.

$$-2\left(-\frac{1}{15}\right) + y = 1 \Leftrightarrow \frac{2}{15} + y = 1$$
$$\Leftrightarrow \frac{2}{15} + y - \frac{2}{15} = 1 - \frac{2}{15}$$
$$\Leftrightarrow y = \frac{13}{15}$$

Étape 5. Nous n'avons pas raisonné par équivalence mais par implication. Nous avons que s'il y a une solution ce ne peut-être que le couple précédent. Il faudrait maintenant vérifier que ce couple est effectivement solution des deux équations.

L'ensemble des solutions de
$$(S_1)$$
 est $\mathscr{S} = \left\{ \left(-\frac{1}{15}; \frac{13}{15} \right) \right\}$.

IV Exercices.

Résolution de systèmes.

Exercice 3. Application.

Exercices 111 à 123 page 197 du manuel Indice : résolution de systèmes.

Position relative de droites.

Exercice 4.

Par un raisonnement géométrique donnez le nombre de solutions des systèmes d'équations suivants.

$$(S_1)$$
 $\begin{cases} y = 2x + 1 \\ y = -5x + 6 \end{cases}$, (S_2) $\begin{cases} y = -3x + 1 \\ y = -3x + \pi \end{cases}$, (S_3) $\begin{cases} y = 2x + 5 \\ 2y = 4x + 10 \end{cases}$.

Exercice 5.

Par un raisonnement géométrique donnez le nombre de solution du système d'équations suivants.

$$(S) \begin{cases} 3x + 4y - 1 = 0 \\ -2x - \frac{8}{2}y - 17 = 0 \end{cases}.$$

Exercice 6.

Recherchez les positions relatives et les éventuels points d'intersection des droites \mathcal{D}_1 et \mathcal{D}_2 dont les équations dans un repère (O,I,J) du plan sont :

- 1. \mathcal{D}_1 : y = -1x + 2 et \mathcal{D}_2 : y = 3x 1
- 2. \mathcal{D}_1 : $y = \frac{10}{2}x 3$ et \mathcal{D}_2 : $y = 5x \frac{27}{9}$
- 3. \mathcal{D}_1 : $y = \pi^2 x \sqrt{2}$ et \mathcal{D}_2 : $y = \pi^2 x + \frac{7}{4}$
- 4. \mathcal{D}_1 : $y = \frac{\sqrt{2}}{2}x + 1$ et \mathcal{D}_2 : $y = -x + \frac{\pi}{2}$
- 5. \mathcal{D}_1 : $x = \sqrt{2}$ et \mathcal{D}_2 : $y = \sqrt{2}x 2$
- 6. \mathcal{D}_1 : $x = -\pi^2 + 4$ et \mathcal{D}_2 : $x = 4^{1000}$

Exercice 7. Application.

Exercices 130 à 150 page 198 à 200 du manuel Indice : position relative de droites.

Exercice 8. Application.

Exercices 36 et 37 page 235 (Sesamath). Déterminer la position relative de deux droites à partir de leurs équations.

Exercice 9.

Exercice 38 page 235 (Sesamath). Déterminer la position relative de deux droites à partir des coordonnées de deux points de l'une et de l'équation de l'autre.

Exercice 10.

Exercice 43 page 236 (Sesamath). Parallélisme et mise en équation.

Exercice 11. Application.

Exercices 50 et 51 page 236 (Sesamath). Détermination du nombre de solutions d'un système puis résolution.

Problèmes.

Exercice 12.

Problème longtemps: le vigneron (1900).

Un vigneron qui venait d'acheter un pré disait : « Si je vends mon vin $160~\mathrm{F}$ la pièce, j'aurai de quoi payer mon pré et il me restera $800~\mathrm{F}$; si je le vends $140~\mathrm{F}$ comme on me le propose, il me manquera $300~\mathrm{F}$. »

On demande le nombre de pièces de vin et le prix du pré.

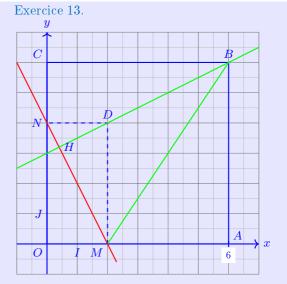
Dans un repère orthonormé (O,I,J) on donne les points A(6;0), et M(2;0).

OABC est un carré.

OM = CN et OMDN est un rectangle.

Les droites (BD) et (MN) se coupent en H.

Le but de l'exercice est de démontrer que le triangle BHM est rectangle en H.



- 1. Quelles sont les coordonnées des points B, N et D?
- 2. (a) Quelles sont les équations des droites (MN) et (BD)?
 - (b) Déduisez-en les coordonnées de H.
- 3. Démontrez que le triangle MBH est rectangle.

Exercice 14. Application.

Exercices 124 à 129 page 198 du manuel Indice : des problèmes variés.

Ce qu'il faut retenir.

- 1. Résoudre un système linéaire de deux équations à deux inconnues (au moins une méthode).
- 2. Pour ceux qui souhaitent choisir la spécialité maths jusqu'en terminale il serait bon de maîtriser la méthode du pivot de Gauss.
- 3. Mise en équation d'un système à partir d'un problème.
- 4. Interpréter géométriquement l'ensemble des solutions.
- 5. Prévoir le nombre de solution d'un système en faisant une interprétation géométrique en terme de droites.