Interrogation du 05/09/2024.

Interrogation du 05/09/2024. 25 minutes.

EXERCICE 1.

Soit $(u_n)_{n\geq 0}$ la suite définie par : $u_0=0,7$ et, pour tout n entier naturel,

$$u_{n+1} = \frac{3u_n}{1 + 2u_n}.$$

On admet que tous les termes de la suite $(u_n)_{n\in\mathbb{N}}$ sont positifs.

Enfin on note $f(x) = \frac{3x}{2x+1}$.

- 1. Démontrez que $f'(x) = \frac{3}{(2x+1)^2}$ puis déduisez-en les variations de f sur $[0, +\infty[$.
- 2. Démontrez par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

EXERCICE 2.

Déterminez la limite en $+\infty$ de la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_n = \frac{n^7 \sqrt{n}}{\frac{1}{n^2} - 5}$$

pour tout $n \in \mathbb{N}$.

1. $f = \frac{u}{v}$ avec u(x) = 3x et v(x) = 2x + 1. u et v étant dérivables sur \mathbb{R} et v ne s'annulant pas sur \mathbb{R} (racine $-\frac{1}{2}$), f est dérivable sur \mathbb{R}_+ et $f' = \frac{u'v - uv'}{v^2}$.

Or u' = 3 et v'(x) = 2 donc, pour tout x réel

$$f'(x) = \frac{3 \times (2x+1) - 3x \times 2}{(2x+1)^2}$$
$$= \frac{3}{(2x+1)^2}$$

Ainsi f' est strictement positive sur \mathbb{R}_+ et donc

$$f$$
 est strictement croissante sur \mathbb{R}_+ .

- 2. Démontrons par récurrence que, pour tout n entier naturel non nul, $u_n \leq u_{n+1}$.
 - * Hérédité.

Soit $k \in \mathbb{N}$.

Supposons $u_k \leq u_{k+1}$.

Démontrons que $u_{k+1} \leq u_{k+2}$.

Par hypothèse de récurrence :

$$u_k \le u_{k+1}$$

Par croissance de f

$$f(u_k) \le f(u_{k+1})$$

Par définition de la suite :

$$u_{k+1} \leq u_{k+2}$$

* Initialisation. Démontrons que $u_0 \leq u_1$.

D'une part $u_0 = 0, 7$ et d'autre part $u_1 = f(u_0) = 0,875$ donc $u_0 \le u_1$.

* Conclusion.

Nous avons démontré l'initialisation et l'hérédité donc

$$u_n \leq u_{n+1}$$
 pour tout $n \in \mathbb{N}$.

3. * $\lim_{n\to+\infty} n^7 = +\infty$ et $\lim_{n\to+\infty} \sqrt{n} = +\infty$ donc par produit : $\lim_{n\to+\infty} n^7 \sqrt{n} = +\infty$.

Interrogation du 05/09/2024.

* $\lim_{n\to+\infty} \frac{1}{n^2} = 0$ donc, par somme, $\lim_{n\to+\infty} \frac{1}{n^2} - 5 = -5$.

* Par quotient :

$$\lim_{n\to+\infty} \frac{n^7 \sqrt{n}}{\frac{1}{n^2} - 5} = -\infty.$$