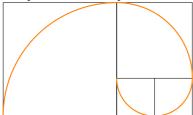
Travail libre 1 : suite de Fibonacci.

On s'intéresse dans cet exercice à la suite dite de Fibonacci qui est définie par $F_0=0,$ $F_1=1$ et pour tout entier naturel n

$$F_{n+2} = F_{n+1} + F_n \quad (*).$$

Spirale de Fibonacci.

- 1. Calculez F_2, F_3, F_4, F_5 .
- 2. Tracez un carré de 1 unité de côté. Puis un second carré ayant un côté commun avec le précédent. Puis enroulez successivement des carrés comme ci-dessous. Enfin tracez des quarts de cercles pour dessiner la spirale de Fibonacci.



Où la suite de Fibonacci apparaît-elle dans cette figure?

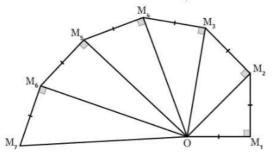
Premiers pas avec $(F_n)_{n\in\mathbb{N}}$.

- Démontrez, par une récurrence double, que les termes de la suite de Fibonacci sont tous positifs.
- 4. En remarquant que, pour $n \ge 1$, la relation (*) peut s'écrire $F_{n+1} = F_n + F_{n-1}$, déduisez de la question précédente le sens de variation de la suite $(F_n)_{n \in \mathbb{N}}$.
- 5. Montrez: $\forall n \in \mathbb{N}, F_{n+1}^2 F_n F_{n+2} = (-1)^n$.

Le nombre d'or φ .

- 6. On souhaite dans cette question chercher des suites géométriques qui vérifient la relation de récurrence (\star) .
 - (a) Soit $q \in \mathbb{R}_+^*$. Montrez que, si la suite $(q^n)_{n \in \mathbb{N}}$ vérifie la relation de récurrence (\star) alors q est solution de l'équation $q^2 q 1 = 0$.
 - (b) Résolvez l'équation $x^2 x 1 = 0$. Vous noterez φ la plus grande solution et α la plus petite.
- 7. Dans cette question on étudie les nombres $\varphi = \frac{1+\sqrt{5}}{2}$ et $\alpha = \frac{1-\sqrt{5}}{2}$ obtenus à la question précédente.
 - (a) Justifiez que $1 < \varphi < 5$.
 - (b) Démontrez que $\alpha = 1 \varphi$.
 - (c) Justifiez, grâce à la question 2, que $\varphi^2 = \varphi + 1$.
 - (d) Déduisez-en que : $\varphi 1 = \frac{1}{\omega}$.
 - (e) Déduisez-en que $\alpha = -\frac{1}{\varphi}$.
- 8. Nous allons voir une construction géométrique de φ . On construit, comme sur la figure ci-dessous, de proche en proche; les points $M_1,\ M_2,\ ...,\ M_7$ en partant de $OM_1=1$. On obtient ainsi la spirale de Pythagore :

1



Calculez OM_5 puis déduisez-en une construction (à la règle et au compas) de φ .

9. Démontrez que la suite $\left(\frac{F_{n+1}}{F_n}\right)_{n\in\mathbb{N}^*}$ converge et trouvez sa limite.

Travaille sur l'anneau $\mathbb{R}[\varphi]$.

- 10. On s'intéresse dans cette question aux puissances de φ . Rappelons que nous avons établi que $\varphi^2 = \varphi + 1$. Autrement dit φ^2 est de la forme $a + b\varphi$, avec a et b des entiers, puisque $\varphi^2 = 1 + 1 \times \varphi$.
 - (a) Écrivez φ^3 , φ^4 , φ^5 sous la forme $a+b\varphi$ où a et b sont des nombres entiers.
 - (b) Démontrez que pour tout entier $n \ge 2$, $\varphi^n = F_{n-1} + F_n \varphi$.
 - (c) À l'aide de la question précédente on a conçu le programme suivant. dans le but de fournir les valeur de a et b dans la décomposition de φ^n sous la forme $a\varphi + b$ pour n entier naturel quelconque.

```
def coefficients(n):
    if n==0:
        1=[0,1]
    if n==1:
        1=[1,0]
    if n>1:
        1=[1,1]
    if n>2:
        for k in range(1,n-1):
        c=1[0]
        1[0]=.....
        1[1]=.....
    return 1
```

Complétez cet algorithme. Déduisez-en φ^{35} .

Une suite d'ordre 1 tendant vers φ .

- 11. Dans cette question nous allons voir une façon d'obtenir des valeurs approchées de φ grâce à une suite récurrente d'ordre 1. Soit f la fonction définie sur \mathbb{R}_+ par $f(x) = \sqrt{1+x}$. Considérons la suite définie par $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.
 - (a) Montrez que, pour tout $n \in \mathbb{N}$, $0 \le u_n \le u_{n+1} \le \varphi$.
 - (b) Déduisez-en que (u_n) converge et déterminez sa limite (en recherchant un point fixe).

(c) Déduisez de ce qui précède une écriture de φ sous forme de radicaux itérés.

Une formule explicite de (F_n) .

12. Dans cette question on souhaite donner une expression explicite du terme général de la suite de Fibonacci. Pour cela on part d'une suite inspirée des questions précédentes :

$$v_n = \lambda \varphi^n + \mu \alpha^n,$$

définie, pour tout $n \in \mathbb{N}$ où λ et μ sont des nombres réels que nous déterminerons ci-après.

- (a) Démontrez que la suite (v_n) vérifie la relation de récurrence (\star) .
- (b) Démontrez que si (v_n) est la suite de Fibonacci alors nécessairement $\lambda = -\mu$. Indication. Si (v_n) est la suite Fibonacci alors en particulier on doit avoir $v_0 = 0$.
- (c) Déduisez-en que si (v_n) est la suite de Fibonacci alors nécessairement $\lambda = \frac{1}{\sqrt{5}}$. Indication. Si (v_n) est la suite Fibonacci alors en particulier on doit avoir $v_1 = 1$.

Dorénavant on pose, pour tout entier naturel n:

$$v_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n.$$

On pourra aussi l'écrire

$$v_n = \frac{1}{\sqrt{5}}\varphi^n - \frac{1}{\sqrt{5}}\alpha^n.$$

(d) Démontrez par récurrence que pour tout entier naturel n

$$F_n = v_n$$
.

Étude asymptotique de $(F_n)_{n\in\mathbb{N}}$.

On admet que pour tout $n \in \mathbb{N}$, $F_n = \frac{1}{\sqrt{5}}\varphi^n - \frac{1}{\sqrt{5}}\alpha^n$ et que $-1 < \alpha < 0$.

13. Étudiez la convergence de (F_n) .

Somme des termes de la suite de Fibonacci.

- 14. Dans cette question on souhaite calculer la somme S_n des termes de la suite de Fibonacci jusqu'au rang $n: S_n = \sum_{i=0}^n F_i$.
 - (a) Écrivez $\sum_{i=0}^{5} F_i$ avec le symbole d'addition usuel +.
 - (b) Calculez S_0 , S_1 , S_2 .
 - (c) En utilisant l'expression de F_n trouvée à la question précédente (c'est-à-dire v_n), montrez que, pour tout entier naturel n

$$S_n = \frac{1}{\sqrt{5}} \left(\sum_{i=0}^n \varphi^i \right) - \frac{1}{\sqrt{5}} \left(\sum_{i=0}^n \alpha^i \right).$$

(d) Déduisez-en, pour tout $n \in \mathbb{N}$,

$$S_n = \frac{1}{\sqrt{5}} \left[\frac{1 - \varphi^{n+1}}{1 - \varphi} - \frac{1 - \alpha^{n+1}}{1 - \alpha} \right].$$

Suite de Fibonacci et coefficients binomiaux.

- 15. Montrez que : $\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} \binom{n}{k} F_k = F_{2n}.$
- 16. Montrez que : $\forall n \in \mathbb{N}, \sum_{k=0}^{n} (-1)^k \binom{n}{k} F_k = -F_n$.

 17. Les F_n sont les sommes des diagonales ascendantes du triangle de Pascal. Autrement dit : $\forall n \in \mathbb{N}, F_n = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} n \binom{n-k}{k}$.

dit:
$$\forall n \in \mathbb{N}, F_n = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} n \binom{n-k}{k}.$$