Équation différentielle.

On s'intéresse dans ce problème à l'ensemble des solutions de l'équation différentielle (1) $y'-2y=8x^2-8x$, c'est-à-dire l'ensemble $\mathscr S$ des solutions f dérivables sur $\mathbb R$ et vérifiant : $\forall x \in \mathbb R$, $f'(x)-2f(x)=8x^2-8x$.

Partie A.

On rappelle que l'ensemble \mathscr{F}' des fonctions dérivables sur $\mathbb R$ est un sous-espace vectoriel de l'espace vectoriel $\mathscr F$ des applications de $\mathbb R$ dans $\mathbb R$ (muni de l'addition de ces applications et de leur multiplication par un scalaire).

- 1. (a) \mathscr{S} est-il un sous-espace vectoriel de \mathscr{F}' ?
 - (b) Montrer qu'il existe dans $\mathcal S$ une fonction polynomiale du deuxième degré et une seule : précisez cet élément de $\mathcal S$.
- 2. (a) Vérifiez que si f et g sont des éléments de \mathscr{S} , alors leur différence f-g est élément de \mathscr{S}_h où \mathscr{S}_h désigne l'ensemble solutions de l'équation différentielle (2) y'-2y=0, c'est-à-dire l'ensemble \mathscr{S}_h des fonctions h dérivables sur \mathbb{R} et vérifiant : $\forall x \in \mathbb{R}$, h'(x)-2h(x)=0.
 - (b) Prouvez que \mathscr{S}_h est un espace vectoriel sur \mathbb{R} , dont la fonction $h_1: x \mapsto \mathrm{e}^{2x}$ constitue une base. On sera amené à poser $h = u \times h_1$ et montrer que $h \in \mathscr{S}_h$ si, et seulement si, u est une fonction constante.
- 3. Déduisez-en que : $\mathscr{S} = \{ f \in \mathscr{F} \mid \exists m \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = me^{2x} 4x^2 \}.$

Partie B.

On considère dans le plan affine euclidien muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$ la famille des courbes représentatives des fonctions $f_m : x \mapsto me^{2x} - 4x^2$ (où m est un paramètre réel).

- 1. Montrer que par tout point M du plan passe une courbe de la famille et une seule, et vérifier que pour une même abscisse x_0 l'ordonnée $f_m(x_0)$ du point de la courbe représentative f_m est une fonction croissante de m.
 - On désignera par C_m la courbe représentative de la fonction f_m (le paramètre réel m étant fixé), ou encore par $C_{\mathbb{I}}M$ la courbe de la famille passant par le point M.
- 2. (a) Étudier les variations de la fonction $\varphi: x \mapsto 4xe^{2x}$ et construire sa courbe représentative.
 - (b) En déduire, selon la valeur du paramètre m, les variations de la fonction f_m (on sera amené à discuter le signe de $m \varphi(x)$).
- 3. (a) Selon la valeur de m, la courbe C_m possède au plus deux points où la tangente est parallèle à l'axe $\left(0;\vec{i}\right)$: montrer que lorsque m décrit $\mathbb R$ l'ensemble des points ainsi obtenus est une parabole (P) dont on donnera une équation cartésienne et dont on indiquera le sommet S.
 - (b) Montrer que la tangente à C_m en son point d'intersection avec l'axe $(O; \vec{j})$ passe par le point I de coordonnées $\left(-\frac{1}{2}, 0\right)$.
- 4. (a) Tracer sur un même graphique et avec soin, en prenant 4 cm pour unité de longueur,
 - la parabole (P),
 - la courbe C_0 (correspondant à m = 0),
 - la courbe $C_{\frac{2}{6}}$ (dont on vérifiera qu'elle passe par le sommet S de (P)).

- (b) Déterminer l'aire de la partie du plan comprise entre la droite D_{α} d'équation $x = -\alpha$ (où α est un réel donné positif), la courbe C_0 , la courbe $C_{\frac{2}{e}}$ et l'arc (OS) de la parabole (P). Quelle est la limite de cette aire lorsque α tend vers $+\infty$?
- (c) Construire sur ce graphique la courbe $C_{[A]}$ passant par le point A de coordonnées (1,0).