On appelle F l'ensemble des applications f continues de \mathbb{R} dans \mathbb{R} vérifiant : (1) $\left\{ \begin{array}{l} \forall (x,y) \in \mathbb{R}^2, \\ f(0) \geq 0 \end{array} \right.$

- 1. Vérifier que la fonction $x \mapsto 2^{-x^2}$ appartient à F.
- 2. Écrire ce que devient la relation (1) dans chacun des cas suivants : x = 0, y = 0, x = y. Quelles sont les valeurs possibles de f(0)?
- 3. Montrer que f(0) = 0 si et seulement si f est l'application identiquement nulle notée $\tilde{0}$.
- 4. On suppose que f s'annule pour une valeur $a \neq 0$.
 - (a) On considère la suite $(U_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N},\ U_n=\frac{a}{2^n}$. Montrer que la suite $(U_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limites.
 - (b) Montrer par récurrence sur l'entier n que pour tout $n \in \mathbb{N}$, $f(U_n) = 0$ (utiliser la question 2). En déduire alors que f(0) = 0.
- 5. On suppose $f \neq 0$. calculer f(0). Montrer que f ne s'annule jamais et que, pour tout réel x, f(x) > 0. Montrer que f est une fonction paire.

Partie B.

Soit G l'ensemble des fonction g de \mathbb{R} dans \mathbb{R} définies par : $\exists f \in F, \forall x \in \mathbb{R}, g(x) = \ln(f(x))$.

- 1. Montrer à l'aide la relation (1) vérifiée par f, que tout élément g de G vérifie la relation : (2) $\forall (x,y) \in \mathbb{R}^2$, g(x+y)+g(x-y)=2[g(x)+g(y)].
- 2. Déterminer g(0) et montrer que g est une fonction paire.
- 3. Montrer à l'aide de la relation (2) que : (3) $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \ g(nx) = n^2 g(x)$. Montrer que la relation (3) reste vérifiée pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{Z}$.
- 4. Montrer que : $\forall r \in \mathbb{Q}, \ \forall x \in \mathbb{R}, \ g(rx) = r^2 g(x)$ (on pourra poser $r = \frac{p}{q}$ où $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$). On pose $g(1) = \lambda$. En déduire que : $\forall r \in \mathbb{Q}, \ g(r) = \lambda r^2$. En déduire f(r) pour tout $r \in \mathbb{Q}$.

Partie C.

On admet dans toute la suite que les fonction de F distinctes de $\tilde{\ }$ 0 sont les fonctions f_{λ} , où λ est un paramètre réel quelconque, définies par : $\forall x \in \mathbb{R}, f_{\lambda}(x) = e^{\lambda x^2}$. On note C_{λ} la courbe représentative de f_{λ} dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1. Étudier les variations de f_{λ} suivant les valeurs de λ . Pour quelles valeurs de λ la courbe C_{λ} a-t-elle une asymptote?
- 2. Montrer que si $\lambda > 0$, il existe sur C_{λ} deux points A_{λ} et B_{λ} en lesquels la tangente passe par l'origine. Exprimer les coordonnées de A_{λ} et B_{λ} en fonction de $\lambda > 0$. Quel est l'ensemble formé par les points A_{λ} et B_{λ} lorsque λ varie?