Suites combinées.

EXERCICE 1. Soient $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ deux suites numériques définies pour tout $n\in\mathbb{N}$ par : $x_n=\frac{y_{n-1}}{4},\ y_n=\frac{3}{4}x_{n-1}+\frac{1}{2}y_{n-1},\ x_0=2$ et $y_0=2$.

- 1. Soit $(v_n)_{n\in\mathbb{N}}$ la suite numérique définie par $v_n=x_n+y_n$ pour tout $n\in\mathbb{N}$.
 - (a) Montrez que (v_n) est une suite géométrique. (v_n) est-elle convergente? Exprimez $x_n + y_n$ en fonction de n.
 - (b) Démontrez par récurrence sur n que, pour tout $n\in\mathbb{N},\,x_n>0$ et $y_n>0.$
- 2. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_n = \frac{x_n}{y_n}$ pour tout $n\in\mathbb{N}$. Démontrez qu'elle vérifie $u_{n+1} = \frac{1}{3u_n+2}$ pour tout $n\in\mathbb{N}$.
- 3. Soit $(w_n)_{n\in\mathbb{N}}$ la suite définie par : $w_n = \frac{u_n \frac{1}{3}}{u_n + 1}$. Démontrez que (w_n) est une suite géométrique. donnez l'expression de w_n , puis de u_n en fonction de n. déduisez-en que la suite $u(u_n)_{n\in\mathbb{N}}$ est convergente.
- 4. En utilisant les valeurs de $u_n = \frac{x_n}{y_n}$ et $v_n = x_n + y_n$, donnez les expressions de x_n et y_n en fonction de n. Déduisez-en les limites des suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$.