Suites géométriques.

Définition.

EXERCICE 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique. Déterminez la raison de $(u_n)_{n\in\mathbb{N}}$ sachant que $u_4=2$ et $u_5=-3$.

Formule explicite.

EXERCICE 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique à termes strictement positifs. Montrez que $(\ln(u_n))_{n\in\mathbb{N}}$ est arithmétique en précisant sa raison et son premier terme.

EXERCICE 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique. Déterminez la raison de $(u_n)_{n\in\mathbb{N}}$ sachant que $u_5=4$ et $u_{17}=23$. Pour cet exercice vous pourrez utiliser la fonction ln ou la racine n-ième.

Monotonie.

EXERCICE 4. Étudiez la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$ dans les cas suivants.

- a) $u_0 = -203$ et, quel que soit $n \in \mathbb{N}$, $u_{n+1} = u_n 7$.
- b) Quel que soit $n \ge 12$, $u_{n+1} = -56 + 14(n-12)$.
- c) Pour tout $n \in \mathbb{N}$, $u_n = 4n 27$.
- d) Pour tout $n \in \mathbb{N}$, $u_n = (n+2)^2 (n-3)^2$.

Somme des termes de la suite (série associée).

EXERCICE 5. Calculez la somme des 21 premiers termes de la suite géométrique de premier terme $u_3=2$ et de raison 3.

Limites.

Croissances comparées.