Raisonnement par récurrence.

Mode d'emploi.

EXERCICE 1.

- 1. Soit $(p_n)_{n\in\mathbb{N}}$ la suite définie par $p_0=1$ $p_{n+1}=0.5p_n+0.4$, quel que soit $n\in\mathbb{N}$. Démontrez que, pour tout entier naturel $n, p_n \ge 0.8$.
- 2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=-1$ et, pour tout entier naturel $n:u_{n+1}=0.9u_n-0.3$. Démontrez que, pour tout $n\in\mathbb{N},\ u_n=2\times0.9^n-3$.
- 3. Soient f une fonction définie et strictement croissante sur $]-1,5,+\infty[$. On note $\alpha \ge -0,5$ un point fixe de f, autrement dit $f(\alpha) = \alpha$. on pose $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Démontrez que, pour tout $n \in \mathbb{N}$, $-1 \le u_n \le u_{n+1} \le \alpha$.
- 4. On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_1=3$ et, pour tout entier naturel $n\geqslant 1$, $u_{n+1}=0.9u_n+1.3$. Démontrez que $u_n=13-\frac{100}{9}\times 0.9^n$.
- 5. Soit $(v_n)_{n\in\mathbb{N}}$ suite définie par : $v_0=0.1$ et, pour tout entier naturel $n, v_{n+1}=1.6v_n-1.6v_n^2$. On considère $f:x\mapsto 1.6x-1.6x^2$. Étudiez la monotonie de f sur $\left[0,\frac{1}{2}\right]$ puis démontrez par récurrence que $0 \le v_n \le v_{n+1} \le \frac{1}{2}$.
- 6. Soit $(p_n)_{n\in\mathbb{N}^*}$ la suite définie par $p_1=1$ $p_{n+1}=0.2p_n+0.6$, quel que soit $n\in\mathbb{N}$. Démontrez que, pour tout entier naturel $n, p_n=0.75+0.25\times0.2^{n-1}$.
- 7. Soit $(v_n)_{n\in\mathbb{N}}$ une suite définie par $v_0 = 6 \times 10^{21}$ et, pour tout nombre entier naturel n, $v_{n+1} = 0.995v_n + 1.5 \times 10^{19}$.
- 8. On définie la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=5$ et pou tout entier naturel $n, u_{n+1}=\frac{1}{2}\left(u_n+\frac{11}{u_n}\right)$. Après voir démontré que $f:x\mapsto\frac{1}{2}\left(x+\frac{x}{11}\right)$ est croissante sur $(\sqrt{11},+\infty[$, démontrez que $u_n\geqslant u_{n+1}\geqslant\sqrt{11}$ pour tout entier naturel n.
- 9. On considère la suite $(a_n)_{n\in\mathbb{N}}$ telle que $a_0=1700$ et $a_{n+1}=0.75a_n+300$. Démontrez que pour tout $n\in\mathbb{N},\ 1200\leqslant a_{n+1}\leqslant a_n\leqslant 1700$.
- 10. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=8$ et, pour tout entier naturel $n,\,u_{n+1}=\frac{6u_n+2}{u_n+5}$. Montrez que la fonction $f:x\mapsto\frac{6x+2}{x+5}$ est strictement croissante sur $[0,+\infty[$. Déduisez-en que pour tout entier naturel $n,\,u_n>2$.
- 11. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=3$ et $u_{n+1}=5u_n-4n-3$. Démontrez que $u_n\geqslant n+1$.
- 12. On considère la suite $(u_n)_{n\in\mathbb{N}}$ telle que $u_0=0$ et pour tout entier naturel $n,\ u_{n+1}=\frac{-u_n-4}{u_n+3}$. Démontrez que la fonction $f:x\mapsto \frac{-x-4}{x+3}$ est strictement croissante sur $]-3,+\infty[$ puis que pour tout entier naturel $n,-2< u_n \leqslant u_n$.
- puis que pour tout entier naturel n, $u_n = \frac{1}{e}$.

 13. On considère la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par $\begin{cases} u_1 = \frac{1}{e} \\ u_{n+1} = \frac{1}{e} \left(1 + \frac{1}{n}\right) u_n, \text{ pour tout entier } n \ge 1 \end{cases}$ Montrez que pour tout entier naturel non nul n, $u_n = \frac{n}{e^n}$.
- 14. On étudie la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0,3$ et par la relation de récurrence, pour tout entier naturel $n:u_{n+1}=2u_n(1-u_n)$. Démontrez que la fonction $f:x\mapsto 2x(1-x)$ est strictement croissante sur $\left[0,\frac{1}{2}\right]$ puis montrez que $0 \le u_n \le u_{n+1} \le \frac{1}{2}$.
- 15. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et, pour tout $n\in\mathbb{N},\ u_{n+1}=5u_n-8n+6$. Montrez que pour tout $n\in\mathbb{N},\ u_n\geqslant 2n$.

Exercices.

EXERCICE 2. Montrer que les propositions suivantes sont vraies pour tout entier naturel n.

1. $2^{n+4} + 3^{3n+2}$ est divisible par 5.

- 2. 3^{6n+2} 2 est divisible par 7.
- 3. $n^3 n$ est divisible par 3.
- 4. $4^n 1 3n$ est divisible par 9.
- 5. $7 \times 3^{5n} + 4$ est divisible par 11.

EXERCICE 3. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_0=0$ et, pour $n\in\mathbb{N}$: $u_{n+1}=\frac{2}{5}u_n+3$.

Démontrez, pour tout entier naturel n, que : $u_n = 5\left(1 - \left(\frac{2}{5}\right)^n\right)$.

EXERCICE 4. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_1=5$ et, pour $n\geqslant 2:u_n=2u_{n-1}-n$. Démontrez, pour tout entier naturel non nul n, que : $u_n=2(2^{n-1}+1)+n$.

EXERCICE 5. hachette repère 2012 terminale page 32 ex 32 Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=2$ et, pour $n\in\mathbb{N}:u_{n+1}=3u_n+n+1$.

Démontrez, pour tout entier naturel n, que : $u_n = \frac{11}{4} \times 3^n - \frac{3}{4} - \frac{n}{2}$.

EXERCICE 6. On considère la suite (u_n) définie sur \mathbb{N} par : $u_0 = \frac{1}{4}$ et $u_{n+1} = 5u_n - 1$.

- 1. Calculez les trois premiers termes de la suite (u_n) .
- 2. Conjecturez son expression explicite.
- 3. Démontrez la.

EXERCICE 7. On définit par récurrence la *factorielle* d'un entier naturel n et que l'on note n! de la façon suivante : 0! = 1 et $(n + 1)! = (n + 1) \times n!$. Démontrez que pour tout entier n supérieur ou égale à $1, n! = 1 \times \cdots \times n$.

EXERCICE 8. Montrez par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_{n+1} = \frac{1}{2}u_n + 1$, pour tout $n\in\mathbb{N}$ et $u_0 = -2$ est croissante.

EXERCICE 9. Montrez par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_{n+1} = \sqrt{u_n}$, pour tout $n\in\mathbb{N}$ et $u_0=2020$ est décroissante.

EXERCICE 10. Montrez par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_{n+1} = \frac{2}{3-u_n}$, pour tout $n\in\mathbb{N}$ et $u_0=1,8$ est bornée par 1 et 2 et décroissante.

EXERCICE 11. On considère la fonction g définie sur l'intervalle [0;1] par $g(x) = 2x - x^2$.

1. Montrer que la fonction g est strictement croissante sur l'intervalle [0;1] et préciser les valeurs de g(0) et de g(1).

On considère la suite (u_n) définie par $\begin{cases} u_0 &= \frac{1}{2} \\ u_{n+1} &= g(u_n) \end{cases}$ pour tout entier naturel n.

- 2. Calculer u_1 et u_2 .
- 3. Démontrer par récurrence que, pour tout entier naturel n, on a : $0 < u_n < u_{n+1} < 1$.
- 4. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et bornée.

EXERCICE 12. On considère la fonction f définie sur l'intervalle [0;1] par $f(x) = 2xe^{-x}$. On admet que la fonction f est dérivable sur l'intervalle [0;1].

- 1. Résoudre sur l'intervalle [0;1] l'équation f(x) = x.
- 2. (a) Démontrer que, pour tout x appartenant à l'intervalle [0;1], $f'(x) = 2(1-x)e^{-x}$.
 - (b) Donner le tableau de variations de la fonction f sur l'intervalle [0;1].

On considère la suite (u_n) définie par $u_0 = 0.1$ et pour tout entier naturel n, $u_{n+1} = f(u_n)$.

- 3. (a) Démontrer par récurrence que, pour tout n entier naturel, $0 \le u_n < u_{n+1} \le 1$.
 - (b) En déduire que la suite (u_n) est croissante et bornée.

EXERCICE 13. On considère la proposition suivante : $\mathcal{P}(n)$: « 9 divise $10^n + 1$ ».

- 1. Démontrez, pour tout $n \in \mathbb{N}$, que : si $\mathscr{P}(n)$ est vraie, alors $\mathscr{P}(n+1)$ est vraie.
- 2. Qu'en est-il de $\mathcal{P}(0)$, $\mathcal{P}(1)$, $\mathcal{P}(2)$ et $\mathcal{P}(3)$? Que semble-t-il légitime de conjecturer?
- 3. Montrez que, pour tout $n \in \mathbb{N} : 9$ divise $10^n 1$.

4. Déduisez-en à l'aide d'un raisonnement par l'absurde que, pour tout $n \in \mathbb{N}$, la proposition $\mathcal{P}(n)$ est fausse.

EXERCICE 14. Exprimez en fonction de n les sommes données.

a)
$$\sum_{p=0}^{n} (4p-1)$$
. b) $\sum_{p=1}^{n-1} (3p+5)$. c) $\sum_{p=0}^{n} \left(\frac{1}{2}\right)^{n}$. d) $\sum_{p=1}^{n+1} 3 \times 5^{-n}$. e) $\sum_{n=0}^{n} p(p+1)$. f) $\sum_{n=1}^{n} (p-2)^{2}$. g) $\sum_{n=0}^{n} 3^{2p+1}$. h) $\sum_{n=0}^{n+1} 3 \times 2^{p} - 1$.

EXERCICE 15. Exprimez les sommes suivantes à l'aide du symbole Σ , puis calculez-les.

- a) $S = 5 + 8 + 11 + 14 + \cdots + 2012$.

- a) $S = 5 + 8 + 11 + 14 + \dots + 2012$. b) $T = 2^2 + 2^5 + 2^8 + \dots + 2^{20}$. c) $R = 1 + 10^{-2} + 10^{-4} + \dots + 10^{10}$. d) $U = x + x^2 + x^3 + \dots + x^n$, pour $x \in \mathbb{R}$. e) $V = 1 + x^2 + x^4 + x^6 + \dots + x^{2n}$, pour $x \in \mathbb{R}$.

EXERCICE 16. Montrez, pour tout entier naturel n, que :

a)
$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
; b) $\sum_{i=0}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$.

EXERCICE 17. Démontrer, pour tout $n \in \mathbb{N}^*$, que :

$$a^{n} - b^{n} = (a - b) \sum_{i=0}^{n-1} a^{n-1-i} b^{i}.$$

Aide. Pour l'hérédité on utilisera le fait que : $a^{n+1} - b^{n+1} = a \times a^n - b \times b^n$ et a = (a-b) + b. EXERCICE 18. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie $u_0=\frac{1}{4}$ et $u_{n+1}=5u_n-1$.

- 1. Calculez les trois premiers termes de (u_n) .
- 2. Conjecturez son expression explicite.
- 3. Démontrez cette conjecture.

EXERCICE 19. Montrez que la suite (u_n) définie ar $u_0 = 3$ et, pour tout $n \ge 0$, $u_{n+1} = \frac{u_n - 1}{u_n}$ est bien définie et périodique.

EXERCICE 20. Soit $S_n = \sum_{k=0}^n k$. Considérons la propriété $\mathscr{P}(n): S_n = \frac{1}{2} \left(n + \frac{1}{2}\right)^2$. Démontrez que cette propriété est héréditaire mais qu'elle n'est pas vraie pour tout $n \in \mathbb{N}$. EXERCICE 21. Soit $P(x) = \frac{1}{3}x^3 + ax^2 + bx$ un polynôme à coefficients réels. On suppose

que P vérifie l'égalité : $P(x+1) - P(x) = x^2$.

- 1. Sans déterminer a et b, calculez P(0), P(1), P(2), P(3) et P(-1).
- 2. Calculez a et b.
- 3. Montrez par récurrence que, pour tout entier $n \ge 0$, P(n) est un entier.
- 4. On pose $S_1 = 1$ et $S_n = 1 + 2^2 + \cdots + n^2$ (somme des carrés des n + 1 premiers entiers naturels). Démontrez par récurrence les égalités : $S_n = P(n+1) = \frac{n(n+1)(2n+1)}{n}$.

EXERCICE 22.

- 1. Avec la formule du binôme développez $(a+b)^3$ et $(a+b)^4$. 2. On pose : $S_n=1^3+3^3+5^3+\cdots+(2n-1)^3$, n étant un entier naturel non nul. 3. Démontrez par récurrence que $S_n=2n^4-n^2$.
- 4. Déterminez l'entier n tel que $S_n = 29 \, 161$.

EXERCICE 23. Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par : $u_n = \frac{n^3 - n}{3}$.

- 1. Calculez les cinq premiers termes de la suite.
- 2. Donnez l'expression de $u_{n+1} u_n$ en fonction de n.
- 3. Étudiez la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$
- 4. Montrez que pour tout entier $n \in \mathbb{N}$, u_n est un entier.

EXERCICE 24. Soit I un intervalle ou une réunion d'intervalles de $\mathbb R$ et f une fonction définie sur I. Montrez que, si la fonction f vérifie la propriété :

$$\mathscr{P}$$
: « pour tout $x \in I$, $f(x) \in I$ »,

alors on peut définir sur \mathbb{N} la suite numérique (u_n) de la façon suivante :

$$\begin{cases} u_0 \in I \\ u_{n+1} = f(u_n), \text{ pour tout } n \in \mathbb{N}. \end{cases}$$

De plus, la suite numérique (u_n) vérifie la propriété :

Pour tout
$$n \in \mathbb{N}, u_n \in I$$
.

EXERCICE 25. Soient $f: I \to I$ une fonction une fonction croissante, $u_0 \in I$ et (u_n) la suite définie par, pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Démontrez que, si $u_0 > u_1$, alors (u_n) est décroissante.

EXERCICE 26.

— Baccalauréat S Métropole 12 septembre 2013 Exercice 4

Récurrence double.

EXERCICE 27. On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_1=u_2=1$ et $u_{n+2}=-3u_{n+1}-2u_n$. Démontrez que pour tout $n\in\mathbb{N}^*$, $u_n=(-2)^n-3\times(-1)^n$.

EXERCICE 28. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=u_1=4$ et $u_{n+2}=\frac{5}{2}u_{n+1}-\frac{3}{2}u_n$. Conjecturez l'expression de u_n en fonction de n puis démontrez-la.

EXERCICE 29. travail libre 1 sur la suite de Fibonacci.

Récurrence forte.