Raisonnement par récurrence.

Mode d'emploi.

Le raisonnement par récurrence est un procédé qui permet de démontrer des propriétés universelles, $\mathcal{P}(n)$, qui dépendent d'entiers naturels n.

La montée de l'échelle. Si j'affirme : « si on met un pied sur un barreau de l'échelle, alors on met, obligatoirement, l'autre pied sur le barreau supérieur » alors, pour peu que l'on mette un pied sur le barreau d'en bas il faudra grimper toute l'échelle.

Théorème 1.Soit $\mathcal{P}(n)$ une proposition dépendant d'un entier naturel n. Si les deux assertions suivantes sont vraies

- (i) $\mathcal{P}(0)$ est vraie,
- (ii) quel que soit $n \in \mathbb{N}$, si $\mathscr{P}(n)$ est vraie alors, forcément, $\mathscr{P}(n+1)$ est aussi vraie,

alors les assertions $\mathcal{P}(n)$ sont vraies pour tous les entiers naturels n. Remarques.

- 1. L'assertion (i) est appelée *l'initialisation*.
- 2. L'assertion (ii) est appelée *l'hérédité*.
- 3. L'initialisation commence avec n = 0 mais, comme pour les suites, il possible de commencer avec un autre rang.
- 4. Ce théorème, comme le théorème de Pythagore, est une implication. Pour le théorème de Pythagore il faut d'abord vérifier que ABC est rectangle en A pour pouvoir affirmer que l'égalité $BA^2 + AC^2 = BC^2$. De même pour utiliser le raisonnement par récurrence il faut vérifier que l'initialisation et l'hérédité sont vraies avant de pouvoir affirmer que toutes les assertions sont vraies.
- 5. L'assertion de l'hérédité contient à la fois une propriété universelle et une implication nous adopterons systématiquement la rédaction :

Soit $n \in \mathbb{N}$.

Supposons que $\mathcal{P}(n)$ est vraie et démontrons que $\mathcal{P}(n+1)$ est vraie.

. . .

Donc $\mathcal{P}(n+1)$ est vraie.

- 6. Lorsqu'on écrit « Supposons que $\mathcal{P}(n)$ est vraie » on signifie que l'on admet que $\mathcal{P}(n)$ est vraie. Le fait que « $\mathcal{P}(n)$ est vraie » est appelée *l'hypothèse de récurrence*.
- 7. Le raisonnement par récurrence ne permet pas de trouver un nouveau résultat mais il permet de démontrer qu'une conjecture est vraie.

Exemples.

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=3$ et, pour tout $n\in\mathbb{N}, u_{n+1}=\frac{1}{3}u_n+2$. Démontrons par récurrence que, quel que soit $n\in\mathbb{N}, u_{n+1}\leq u_n\leq 3$.
 - * Soit $k \in \mathbb{N}$. Supposons que $u_{k+1} \le u_k \le 3$. Démontrons que $u_{k+2} \le u_{k+1} \le 3$. $f: x \mapsto \frac{1}{4}x + 2$ est une fonction affine dont le coefficient directeur est strictement supérieur à 0 donc f est croissante.

De l'hypothèse de récurrence : $u_{k+1} \le u_k \le 3$ et de la croissance de f nous déduisons : $f(u_{k+1}) \le f(u_k) \le f(3)$.

Autrement dit : $u_{k+2} \le u_{k+1} \le \frac{11}{4} \le 3$.

* Montrons que : $u_1 \le u_0 \le 3$.

u0 = 3 et $u_1 = f(u_0) = f(3) = \frac{11}{4}$ donc $u_1 \le u_0 \le 3$.

- * Nous avons démontré par récurrence que : $\forall n \in \mathbb{N}, u_{n+1} \leq u_n \leq 3$.
- 2. Démontrer une propriété.

Notons, pour tout $n \in \mathbb{N}$, $\mathcal{P}(n) : (4^n - 1)$ est divisible par trois ».

Démontrons que $\mathscr{P}(n)$ est vraie pour tout $n\in\mathbb{N}$ en raisonnant par récurrence.

* Initialisation. Il s'agit de démontrer que $\mathcal{P}(0)$ est vraie. Autrement dit que 4^0-1 est divisible par 3.

 $4^{0} - 1 = 0$ et $3 \times 0 = 0$. Donc $\mathcal{P}(0)$ st vraie.

* Hérédité.

Soit $n \in \mathbb{N}$.

Supposons que $\mathcal{P}(n)$ est vraie et démontrons que $\mathcal{P}(n+1)$ est vraie.

Nous devons donc démontrer que $4^{n+1} - 1$ est un multiple de 3.

$$4^{n+1} - 1 = 4 \times (4^n - 1) + 3$$

D'après l'hypothèse de récurrence : $3|4^n - 1$.

Autrement dit il est possible d'écrire : $4^n - 1 = 3 \times k$ où k est un nombre entier.

Donc

$$4^{n+1} - 1 = 4 \times 3k + 3$$
$$= 3(4k + 1)$$

Autrement dit $4^{n+1} - 1$ est divisible par 3.

Donc $\mathcal{P}(n+1)$ est vraie.

Nous avons démontré en raisonnant par récurrence sur $n \in \mathbb{N}$ que

pour tout
$$n \in \mathbb{N}$$
, $4^n - 1$ est divisible par 3.

3. Démontrer une formule. Ici la somme des entiers naturels jusqu'à n.

Soit
$$\mathcal{P}(n)$$
: $\langle \sum_{k=0}^{n} k = \frac{n(n+1)}{2} \rangle$.

Démontrons par récurrence sur $n \in \mathbb{N}$ que $\mathscr{P}(n)$ est vraie.

- * $0 = \frac{0 \times 1}{2}$. Donc $\mathcal{P}(0)$ est vraie.
- * Soit $n \in \mathbb{N}$.

Supposons que $\mathcal{P}(n)$ est vraie et démontrons que $\mathcal{P}(n+1)$ est vraie.

$$\sum_{k=0}^{n+1} k = n+1 + \sum_{k=0}^{n} k$$

D'après l'hupothèse de récurrence :

$$\sum_{k=0}^{n+1} k = n+1 + \frac{n(n+1)}{2}$$

$$= \frac{2(n+1) + n(n+1)}{2}$$

$$= \frac{(2+n)(n+1)}{2}$$

Donc $\mathcal{P}(n+1)$ est vraie.

Nous avons démontré par récurrence sur $n \in \mathbb{N}$ que

pour tout
$$n \in \mathbb{N}$$
,

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

4. Démontrer la formule explicite du terme terme général d'une suite.

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=8$ et, pour tout $n\in\mathbb{N}, u_{n+1}=\frac{2}{5}u_n+3$. Nous souhaitons démontrer que $u_n=3\left(\frac{2}{5}\right)^n+5$ pour tout $n\in\mathbb{N}$.

Notons $\mathcal{P}(n)$: « $u_n = 3\left(\frac{2}{5}\right)^n + 5$ ».

Démontrons par récurrence sur $n \in \mathbb{N}$ que $\mathscr{P}(n)$ est vraie.

5. Démontrer qu'une suite définie par récurrence est croissante.

Étudions la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=-1$ et $u_{n+1}=\sqrt{2+u_n}$.

6. Démontrer un encadrement.

Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 = 3$ et $u_{n+1} = 2 + \frac{1}{u_n}$.

Démontrons que pour tout $n \in \mathbb{N} : 2 \leq u_n \leq 3$.

7. Démontrer une inégalité.

Démontrons par récurrence que pour tout $n \in \mathbb{N}$, $\mathscr{P}(n)$: « $2n + 1 \le 2^n$ » est vraie.

8. De la nécessité de l'initialisation.

$$\mathscr{P}(n)$$
: « $4^n + 1$ est divisible par 3 ».

* Soit $n \in \mathbb{N}$.

Supposons que $\mathcal{P}(n)$ est vraie et démontrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, il existe $k \in \mathbb{Z}$ tel que $4^n + 1 = 3k$ donc :

$$4^{n+1} - 1 = 4 \times (4^n + 1) - 4 + 1$$
$$= 4 \times 3k - 3$$
$$= 3(4k - 1)$$

Autrement dit $4^{n+1} + 1$ est divisible par 3.

* $4^0 + 1 = 1$ et $3 \nmid 1$. Donc $\mathcal{P}(0)$ est fausse.

Nous remarquons que l'hérédité ne suffit pas à démontrer que toutes les propositions sont vraies.

Nous pourrions même démontrer par l'absurde que 4^n+1 n'est jamais divisible par 3.

9. Inégalité de Bernoulli.

Notons, pour tout $n \in \mathbb{N}$, $\mathcal{B}(n)$: « \P pour tout nombre $x \ge 0$, $(1+x)^n \ge 1 + nx$.»

* Soit $x \in \mathbb{R}_+$.

D'une part : $(1+x)^0 = 1$

d'autre part : $1 + 0 \times x = 1$,

donc: $(1+x)^0 \ge 1+0 \times x$.

 $\mathcal{P}(0)$ est vraie.

* Soit $n \in \mathbb{N}$.

Supposons que $\mathcal{P}(n)$ est vraie et démontrons que $\mathcal{P}(n+1)$ est vraie.

Soit $x \in \mathbb{R}_+$.

D'après l'hypothèse de récurrence :

$$(1+x)^n \ge 1 + nx$$

Puisque $(1+x) \ge 0$:

$$(1+x)^{n+1} \ge (1+x)(1+nx)$$

En développant le membre de droite :

$$(1+x)^{n+1} \ge 1 + (n+1)x + nx^2$$
 (1)

Or, puisque $nx^2 \ge 0$,

$$1 + (n+1)x + nx^{2} \ge 1 + (n+1)x \quad (2)$$

donc, par transitivité entre (1) et (2):

$$(1+x)^{n+1} \ge 1 + (n+1)x$$

Autrement dit $\mathcal{P}(n+1)$ est vraie.

* Nous avons démontré par récurrence que

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}_+, \ (1 = x)^n \ge 1 + nx.$$

EXERCICE 1.

- 1. Soit $(p_n)_{n\in\mathbb{N}}$ la suite définie par $p_0=1$ $p_{n+1}=0.5p_n+0.4$, quel que soit $n\in\mathbb{N}$. Démontrez que, pour tout entier naturel $n, p_n \ge 0.8$.
- 2. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=-1$ et, pour tout entier naturel $n:u_{n+1}=0.9u_n-0.3$. Démontrez que, pour tout $n\in\mathbb{N},\ u_n=2\times0.9^n-3$.
- 3. Soient f une fonction définie et strictement croissante sur $]-1,5,+\infty[$. On note $\alpha \ge -0,5$ un point fixe de f, autrement dit $f(\alpha) = \alpha$. on pose $u_0 = 0$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Démontrez que, pour tout $n \in \mathbb{N}$, $-1 \le u_n \le u_{n+1} \le \alpha$.
- 4. On considère la suite (u_n)_{n∈N*} définie par u₁ = 3 et, pour tout entier naturel n ≥ 1, u_{n+1} = 0,9u_n + 1,3. Démontrez que u_n = 13 100/9 × 0,9ⁿ.
 5. Soit (v_n)_{n∈N} suite définie par : v₀ = 0,1 et, pour tout entier naturel n, v_{n+1} = 1,6v_n -
- 5. Soit $(v_n)_{n\in\mathbb{N}}$ suite définie par : $v_0=0,1$ et, pour tout entier naturel $n, v_{n+1}=1,6v_n-1,6v_n^2$. On considère $f:x\mapsto 1,6x-1,6x^2$. Étudiez la monotonie de f sur $\left[0,\frac{1}{2}\right]$ puis démontrez par récurrence que $0 \le v_n \le v_{n+1} \le \frac{1}{2}$.
- 6. Soit $(p_n)_{n\in\mathbb{N}^*}$ la suite définie par $p_1=1$ $p_{n+1}=0.2p_n+0.6$, quel que soit $n\in\mathbb{N}$. Démontrez que, pour tout entier naturel $n, p_n=0.75+0.25\times0.2^{n-1}$.
- 7. Soit $(v_n)_{n\in\mathbb{N}}$ une suite définie par $v_0 = 6 \times 10^{21}$ et, pour tout nombre entier naturel n, $v_{n+1} = 0.995v_n + 1.5 \times 10^{19}$.
- 8. On définie la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=5$ et pou tout entier naturel $n, u_{n+1}=\frac{1}{2}\left(u_n+\frac{11}{u_n}\right)$. Après voir démontré que $f:x\mapsto\frac{1}{2}\left(x+\frac{x}{11}\right)$ est croissante sur $(\sqrt{11},+\infty[$, démontrez que $u_n\geqslant u_{n+1}\geqslant\sqrt{11}$ pour tout entier naturel n.
- 9. On considère la suite $(a_n)_{n\in\mathbb{N}}$ telle que $a_0=1700$ et $a_{n+1}=0.75a_n+300$. Démontrez que pour tout $n\in\mathbb{N},\ 1200\leqslant a_{n+1}\leqslant a_n\leqslant 1700$.
- 10. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=8$ et, pour tout entier naturel $n,\,u_{n+1}=\frac{6u_n+2}{u_n+5}$. Montrez que la fonction $f:x\mapsto\frac{6x+2}{x+5}$ est strictement croissante sur $[0,+\infty[$. Déduisez-en que pour tout entier naturel $n,\,u_n>2$.
- 11. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=3$ et $u_{n+1}=5u_n-4n-3$. Démontrez que $u_n\geqslant n+1$.
- 12. On considère la suite $(u_n)_{n \in \mathbb{N}}$ telle que $u_0 = 0$ et pour tout entier naturel $n, u_{n+1} = \frac{-u_n 4}{u_n + 3}$. Démontrez que la fonction $f: x \mapsto \frac{-x 4}{x + 3}$ est strictement croissante sur $]-3, +\infty[$ puis que pour tout entier naturel $n, -2 < u_n \le u_n$.
- 13. On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $\begin{cases} u_1 = \frac{1}{e} \\ u_{n+1} = \frac{1}{e} \left(1 + \frac{1}{n}\right) u_n, \text{ pour tout entier } n \ge 1 \end{cases}$ Montrez que pour tout entier naturel non nul $n, u_n = \frac{n}{e^n}$.

- 14. On étudie la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0,3$ et par la relation de récurrence, pour tout entier naturel $n:u_{n+1}=2u_n(1-u_n)$. Démontrez que la fonction $f:x\mapsto 2x(1-x)$ est strictement croissante sur $\left[0,\frac{1}{2}\right]$ puis montrez que $0 \le u_n \le u_{n+1} \le \frac{1}{2}$.
- 15. Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0$ et, pour tout $n\in\mathbb{N},\ u_{n+1}=5u_n-8n+6$. Montrez que pour tout $n\in\mathbb{N},\ u_n\geqslant 2n$.

Exercices.

EXERCICE 2. Montrer que les propositions suivantes sont vraies pour tout entier naturel n.

- 1. $2^{n+4} + 3^{3n+2}$ est divisible par 5.
- 2. $3^{6n+2} 2$ est divisible par 7.
- 3. $n^3 n$ est divisible par 3.
- 4. $4^n 1 3n$ est divisible par 9.
- 5. $7 \times 3^{5n} + 4$ est divisible par 11.

EXERCICE 3. Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_0=0$ et, pour $n\in\mathbb{N}$: $u_{n+1}=\frac{2}{5}u_n+3$. Démontrez, pour tout entier naturel n, que : $u_n=5\left(1-\left(\frac{2}{5}\right)^n\right)$. EXERCICE 4.

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_1=5$ et, pour $n\geq 2$: $u_n=2u_{n-1}-n$.

Démontrez, pour tout entier naturel non nul n, que :

$$u_n = 2(2^{n-1} + 1) + n.$$

EXERCICE 5.

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=2$ et, pour $n\in\mathbb{N}$: $u_{n+1}=3u_n+n+1$.

Démontrez, pour tout entier naturel n, que :

$$u_n = \frac{11}{4} \times 3^n - \frac{3}{4} - \frac{n}{2}.$$

EXERCICE 6.

On considère la suite (u_n) définie sur \mathbb{N} par :

$$u_0 = \frac{1}{4}$$
 et $u_{n+1} = 5u_n - 1$.

- 1. Calculez les trois premiers termes de la suite (u_n) .
- 2. Conjecturez son expression explicite.
- 3. Démontrez la.

EXERCICE 7.

On définit par récurrence la factorielle d'un entier naturel n et que l'on note n! de la façon suivante :

$$0! = 1$$
 et $(n + 1)! = (n + 1) \times n!$.

Démontrez que pour tout entier n supérieur ou égale à $1, n! = 1 \times \cdots \times n$.

EXERCICE 8

Montrez par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_{n+1} = \frac{1}{2}u_n + 1$, pour tout $n\in\mathbb{N}$ et $u_0 = -2$ est croissante.

EXERCICE 9.

Montrez par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_{n+1}=\sqrt{u_n}$, pour tout $n\in\mathbb{N}$ et $u_0=2020$ est décroissante.

EXERCICE 10.

Montrez par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_{n+1} = \frac{2}{3-u_n}$, pour tout $n\in\mathbb{N}$ et $u_0 = 1,8$ est bornée par 1 et 2 et décroissante.

EXERCICE 11.

On considère la fonction g définie sur l'intervalle [0;1] par $g(x) = 2x - x^2$.

1. Montrer que la fonction g est strictement croissante sur l'intervalle [0;1] et préciser les valeurs de g(0) et de g(1).

On considère la suite (u_n) définie par $\left\{ \begin{array}{rcl} u_0 & = & \frac{1}{2} \\ u_{n+1} & = & g(u_n) \end{array} \right. \text{ pour tout entier naturel } n.$

- 2. Calculer u_1 et u_2 .
- 3. Démontrer par récurrence que, pour tout entier naturel n, on a : $0 < u_n < u_{n+1} < 1$.
- 4. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et bornée.

EXERCICE 12.

On considère la fonction f définie sur l'intervalle [0;1] par $f(x) = 2xe^{-x}$. On admet que la fonction f est dérivable sur l'intervalle [0;1].

- 1. Résoudre sur l'intervalle [0;1] l'équation f(x) = x.
- 2. (a) Démontrer que, pour tout x appartenant à l'intervalle [0;1], $f'(x) = 2(1-x)e^{-x}$.
 - (b) Donner le tableau de variations de la fonction f sur l'intervalle [0;1].

On considère la suite (u_n) définie par $u_0 = 0.1$ et pour tout entier naturel $n, u_{n+1} = f(u_n)$.

- 3. (a) Démontrer par récurrence que, pour tout n entier naturel, $0 \le u_n < u_{n+1} \le 1$.
 - (b) En déduire que la suite (u_n) est croissante et bornée.

EXERCICE 13.

On considère la proposition suivante :

$$\mathcal{P}(n)$$
: « 9 divise $10^n + 1$ ».

- 1. Démontrez, pour tout $n \in \mathbb{N}$, que : si $\mathscr{P}(n)$ est vraie, alors $\mathscr{P}(n+1)$ est vraie.
- 2. Qu'en est-il de $\mathcal{P}(0)$, $\mathcal{P}(1)$, $\mathcal{P}(2)$ et $\mathcal{P}(3)$? Que semble-t-il légitime de conjecturer?
- 3. Montrez que, pour tout $n \in \mathbb{N} : 9$ divise $10^n 1$.
- 4. Déduisez-en à l'aide d'un raisonnement par l'absurde que, pour tout $n \in \mathbb{N}$, la proposition $\mathcal{P}(n)$ est fausse.

EXERCICE 14.

Exprimez en fonction de n les sommes données.

a)
$$\sum_{p=0}^{n} (4p-1)$$
.
b) $\sum_{p=1}^{n-1} (3p+5)$.
c) $\sum_{p=0}^{n} \left(\frac{1}{2}\right)^{n}$.
d) $\sum_{p=1}^{n+1} 3 \times 5^{-n}$.
e) $\sum_{p=0}^{n-1} p(p+1)$.
f) $\sum_{p=1}^{n+1} (p-2)^{2}$.
g) $\sum_{p=0}^{n} 3^{2p+1}$.
h) $\sum_{p=0}^{n} 3 \times 2^{p} - 1$.

EXERCICE 15.

Exprimez les sommes suivantes à l'aide du symbole Σ , puis calculez-les.

a)
$$S = 5 + 8 + 11 + 14 + \dots + 2012$$
.

b)
$$T = 2^2 + 2^5 + 2^8 + \dots + 2^{20}$$
.

c)
$$R = 1 + 10^{-2} + 10^{-4} + \dots + 10^{10}$$

d)
$$U = x + x^2 + x^3 + \dots + x^n$$
, pour $x \in \mathbb{R}$.

b)
$$T = 2^2 + 2^5 + 2^8 + \dots + 2^{20}$$
.
c) $R = 1 + 10^{-2} + 10^{-4} + \dots + 10^{10}$.
d) $U = x + x^2 + x^3 + \dots + x^n$, pour $x \in \mathbb{R}$.
e) $V = 1 + x^2 + x^4 + x^6 + \dots + x^{2n}$, pour $x \in \mathbb{R}$.

EXERCICE 16.

Montrez, pour tout entier naturel n, que :

a)
$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
;

b)
$$\sum_{i=0}^{n} i^3 = \left[\frac{n(n+1)}{2} \right]^2$$
.

EXERCICE 17.

Démontrer, pour tout $n \in \mathbb{N}^*$, que :

$$a^{n} - b^{n} = (a - b) \sum_{i=0}^{n-1} a^{n-1-i} b^{i}.$$

 $Aide. \ {\rm Pour} \ {\rm l'h\acute{e}r\acute{e}dit\acute{e}} \ {\rm on} \ {\rm utilisera} \ {\rm le} \ {\rm fait} \ {\rm que} : a^{n+1} - b^{n+1} = a \times a^n - b \times b^n \ {\rm et} \ a = (a-b) + b.$ EXERCICE 18.

EXERCICE 19.

On considère la suite (u_n) définie sur \mathbb{N}^* par :

$$u_1 = u_2 = 1$$
 et $u_{n+2} = -3u_{n+1} - 2u_n$.

Démontrez que, pour tout $n \in \mathbb{N}^*$:

$$u_n = (-2)^n - 3 \times (-1)^n$$
.

EXERCICE 20. D

Soit I un intervalle ou une réunion d'intervalles de \mathbb{R} et f une fonction définie sur I. Montrez que, si la fonction f vérifie la propriété :

$$\mathcal{P}$$
: « pour tout $x \in I$, $f(x) \in I$ »,

alors on peut définir sur \mathbb{N} la suite numérique (u_n) de la façon suivante :

$$\left\{ \begin{array}{l} u_0 \in I \\ u_{n+1} = f(u_n), \ \text{pour tout } n \in \mathbb{N}. \end{array} \right.$$

De plus, la suite numérique (u_n) vérifie la propriété :

Pour tout
$$n \in \mathbb{N}, u_n \in I$$
.

EXERCICE 21. D

Soient $f: I \to I$ une fonction une fonction croissante, $u_0 \in I$ et (u_n) la suite définie par

pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} = f(u_n)$.

Démontrez que, si $u_0 > u_1$, alors (u_n) est décroissante.

EXERCICE 22. D

— Baccalauréat S Métropole 12 septembre 2013 Exercice 4

Récurrence double.

Récurrence forte.