Exercices libres de terminale.

EXERCICE 1. Pour tout entier naturel n , on note F_n le n-ième nombre de Fermat. Il est défini par $F_n=2^{2^n}+1$.

Partie A:

Pierre de Fermat, leur inventeur, a conjecturé que : « Tous les nombres de Fermat sont premiers ». L'objectif dans cette partie est de tester cette conjecture.

- 1. (a) Calculer F_0 , F_1 , F_2 et F_3 .
 - (b) Peut-on en déduire que tous les nombres de Fermat sont premiers?
- 2. On considère l'algorithme ci-dessous :

$$F \leftarrow 2^{2^5} + 1$$

$$N \leftarrow 2$$
Tant que $F\%N \neq 0$

$$N \leftarrow N + 1$$
Fin Tant que
Afficher N

F%N désigne le reste de la division euclidienne de F par N.

La valeur affichée à la fin de l'exécution est 641. Que peut-on en déduire?

Partie B:

L'objectif est de prouver que deux nombres de Fermat distincts sont toujours premiers entre eux.

- 1. Démontrer que pour tout entier naturel n non nul on a $F_n = (F_{n-1} 1)^2 + 1$.
- 2. Pour tout entier naturel n on note : $\prod_{i=0}^n F_i = F_0 \times F_1 \times F_2 \times \ldots \times F_{n-1} \times F_n.$ On a donc

$$\prod_{i=0}^n F_i = \left(\prod_{i=0}^{n-1} F_i\right) \times F_n.$$
 Montrer par récurrence et en utilisant le résultat de la question

précédente que pour tout entier naturel n non nul on a : $\prod_{i=0}^{n-1} F_i = F_n - 2$.

- 3. Justifier que, pour tous entiers naturels n et m tels que n > m, il existe un entier naturel q tel que $F_n qF_m = 2$.
- 4. En déduire que deux nombres de Fermat sont toujours premiers entre eux.