Irrationalité de e.

EXERCICE 1. Pour tout entier naturel n non nul, on pose $a_n = \sum_{p=0}^n \frac{1}{p!}$ et $b_n = a_n + \frac{1}{n \times n!}$.

- 1. Montrer que les suites $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ sont adjacentes.
- 2. Démontrer que pour tout entier naturel n non nul, $e a_n = \frac{1}{n!} \int_0^1 (1-t)^n e^t dt$. Indication: on pourra procéder par récurrence.
- 3. En déduire que pour tout entier naturel n non nul, $0 < e a_n < \frac{1}{n \times n!}$. En déduire la limite de la suite $(a_n)_{n \in \mathbb{N}^*}$. Indication: on pourra étudier les variations de la fonction $t \mapsto (1-t)e^t$.
- 4. En déduire une valeur de n telle que a_n soit une valeur approchée de e à 10^{-5} près.
- 5. On suppose que e est un nombre rationnel.
 - (a) Montrer qu'il existe un entier naturel non nul q tel que le nombre eq! soit un entier naturel.
 - (b) Montrer que $x = q! \left(e \sum_{p=0}^{q} \frac{1}{p!} \right)$ est un entier naturel.
 - (c) Montrer que 0 < x < 1.
 - (d) Conclure.

Exercice 1.

- 1. (a_n) est clairement strictement croissante comme somme de termes strictement positifs. $b_{n+1} b_n < 0$ donc suite strictement décroissante. $b_n a_n = \frac{1}{n \times n!} \underset{n \to +\infty}{\longrightarrow} 0$.
- 2. $e a_{n+1} = e a_n \frac{1}{(n+1)!} = -\frac{1}{(n+1)!} + \frac{1}{n!} \int_0^1 (1-t)^n e^t dt = \frac{1}{(n+1)!} \int_0^1 (1-t)^{n+1} e^t dt$ avec une intégration par parties.

3.

 $4. \ a_7.$

- 5. (a) Si $e = \frac{a}{b}$ avec $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$ alors $b!e \in \mathbb{Z}$. D plus e > 0 donc a > 0 et $b!e \in \mathbb{N}$.
 - (b) $q!e \in \mathbb{N}, \frac{q!}{p!} \in \mathbb{N} \text{ car } p \leq q \text{ donc } x \in \mathbb{Z}. \text{ } e-a_q>0 \text{ donc } x \in \mathbb{N}.$
 - (c) $\frac{1}{q \times q!} > e a_q > 0$ donc 1 > x > 0.
 - (d) Contradiction entre les deux précédentes réponse. Démonstration par l'absurde de l'irrationalité de e.