Inégalité des accroissements finis.

Le théorème.

Théorème 1. Soient $(a,b) \in \mathbb{R}$ tels que a < b, $f : [a,b] \to \mathbb{R}$ de classe C^1 sur [a,b]. Si : $\exists M \in \mathbb{R}_+$, $\forall x \in]a,b[$, $[f'(x)] \leq M$ alors $|f(b) - f(a)| \leq M(b-a)$.

Démonstration.

Quel que soit $t \in [a,b]$:

$$-M \leqslant f'(t) \leqslant M$$

Puisque f' est continue sur [a,b] on peut intégrer :

$$\int_{a}^{b} -M \, dt \le \int_{a}^{b} f'(t) \, dt \le \int_{a}^{b} M \, dt$$
$$-M(b-a) \le f(b) - f(a) \le M(b-a)$$
$$|f(b) - f(a)| \le M(b-a)$$

Remarques.

- 1. La condition « $\exists M \in \mathbb{R}_+, \forall x \in]a,b[,|f'(x)| \leq M$ » signifie que f' est bornée.
- 2. Dans le théorème on se place dans le cas $a \le b$. cependant dans les exercices nous ne saurons pas forcément l'ordre entre a et b. Dans ce cas l'inégalité s'écrit : $|f(b)-f(a)| \le M|b-a|$.

Fonctions lipschitzienne.

Exercices.

EXERCICE 1. Bac 88 C et E. Tunisie-Grèce.

Partie A. Étude de la fonction numérique f définie sur \mathbb{R} par : $f(x) = 2e^x - 2 - xe^x$.

- 1. Étudiez les variations de f et les limites de f quand x tend vers $+\infty$ et $-\infty$; dressez son tableau de variation.
- 2. Déduisez de l'étude de f(x) lorsque x tend vers $-\infty$ l'existence pour la courbe représentative $\mathscr C$ de f d'une asymptote (D); déterminez l'intersection de $\mathscr C$ et de (D) et la position relative de la courbe $\mathscr C$ et de la droite (D).
- 3. Montrez que l'équation f(x) = 0 admet dans \mathbb{R} deux solutions dont l'une notée a dans la suite du problème vérifie 1,5 < a < 1,6. Quelle est l'autre solution?
- 4. Tracez \mathscr{C} et (D) dans un repère orthonormal d'unité 2 cm.

Partie B. Étude de la suite numérique u définie par $u_0 = \frac{3}{2}$ et, pour tout entier naturel n, par $u_{n+1} = 2 - 2e^{-u_n}$.

1. Étude théorique.

On désigne par I l'intervalle $\left[\frac{3}{2},2\right]$.

- (a) Étudiez les variations de la fonction g définie sur I par $g(x) = 2 2e^{-x}$. montrez que $g(I) \subset I$ et que pour tout $x \in I$, $|g'(x)| \leq \frac{1}{2}$.
- (b) Montrez, par récurrence que pour tout entier naturel n, u_n appartient à I puis que la suite u est croissante. Déduisez-en que la suite est convergente vers un réel ℓ tel que $g(\ell) = \ell$. Montrez à l'aide de la partie A que $\ell = a$.

- (c) En utilisant l'inégalité des accroissements finis, montrez que, pour tout entier naturel n, on a : $|u_{n+1} a| \le \frac{1}{2} |u_n a|$ puis que : $|u_n a| \le \frac{1}{10} \left(\frac{1}{2}\right)^n$.
- 2. Étude numérique : soit p un entier strictement positif.
 - (a) Utilisez l'inégalité précédente pour déterminer un entier n_0 tel que, pour tout entier n supérieur ou égale à n_0 , on ait $|u_n-a| \le 10^{-p}$. Précisez n_0 pour p=3.
 - (b) Écrivez la valeur approchée par défaut avec 3 décimale de $u_1,\ u_2,\ u_3,\ u_4$ et u_7 que permet de trouver votre calculatrice.