Continuité.

Un exemple.

Définition.

Les fonctions continues de références.

Des procédés pour construire des fonctions continues à partir d'autres fonctions continues.

Une condition suffisante de continuité.

Théorème des valeurs intermédiaires.

EXERCICE 1. Soit $f: x \mapsto \frac{x^2 - 8}{x^2 + 1}$ une fonction définie sur [0; 1].

- 1. Calculez f(0) et f(1).
- 2. Justifiez que l'équation f(x) = -5 admet au moins une solution dans [0;1].
- 3. Les plus braves déterminerons l'ensemble des antécédents de -5.

EXERCICE 2. Démontrez que l'équation $\sqrt{x} + e^x - 2 = 1$ admet au moins une solution dans \mathbb{R} .

Théorème des valeurs intermédiaires avec des fonctions strictement monotones.

EXERCICE 3. Déterminez
$$f(]2; +\infty[)$$
 lorsque $f: x \mapsto \exp\left(\frac{1}{x^2-4}\right)$.

EXERCICE 4. Soit $f: x \mapsto x^3 - 6x + 1$ une fonction définie sur $[-2; +\infty[$.

- 1. Montrez que l'équation f(x) = 0 admet au moins une solution.
- 2. Montrez que l'équation f(x) = 0 admet une unique solution dans $[2; +\infty[$.

EXERCICE 5. Soit $f: x \mapsto x^3 - 8x + 1$ une fonction définie sur \mathbb{R} . Montrez que l'équation f(x) = 0 admet une unique solution sur [-1; 1].

EXERCICE 6. Soit $f: x \mapsto 4x^5 + 2x - 2$ une fonction définie sur \mathbb{R} .

- 1. Montrez que l'équation f(x) = 8 admet une unique solution que nous noterons α .
- 2. Déterminez un encadrement de α à 10^{-2} .

EXERCICE 7. Soit g la fonction définie sur $\mathbb R$ par

$$q(x) = 2x^3 - 3x^2 - 1.$$

- 1. Étudiez les variations de g.
- 2. Montrez que l'équation g(x)=0 admet sur $\mathbb R$ une unique solution α . Donnez un encadrement de α à 0,1 près.
- 3. Déterminez le signe de g(x) sur \mathbb{R} .
- 4. Soit f la fonction définie sur $]-1;+\infty[$ par :

$$f(x) = \frac{1-x}{x^3+1}.$$

- (a) Calculez f'(x) puis exprimez f'(x) en fonction de g(x).
- (b) Déduisez-en le signe de f'(x) puis les variations de f sur $]-1, +\infty[$.

1

EXERCICE 8. Soit f la fonction définie sur \mathbb{R}_+ par : $f(x) = 2x^3 - \frac{5}{2}x^2 - x + \frac{1}{2}$.

- 1. Étudiez les variations de f sur \mathbb{R}_+ .
- 2. Déterminez le nombre de solutions dans \mathbb{R}_+ de l'équation f(x) = 2.

EXERCICE 9. Soit f la fonction définie sur \mathbb{R} par $f(x) = x^4 + 3x^2 - 5x + 1$.

- 1. Calculez pour tout réel x, f'(x) et f''(x).
- 2. Déterminez le signe de f''(x) puis dressez le tableau de variation de f'.
- 3. (a) Montrez que l'équation f'(x) = 0 possède une unique solution α sur \mathbb{R} donc on donnera en encadrement à 0,1 près.
 - (b) Déduisez-en le signe de f' sur \mathbb{R} .
 - (c) Dressez le tableau de variation de f.

EXERCICE 10. On veut résoudre dans $[0,\pi]$ l'équation : $3x - 2\cos(x) - 2 = 0$.

- 1. Soit f la fonction définie sur $[0,\pi]$ par : $f(x) = 3x 2\cos(x) 2$. Étudiez les variations de f.
- 2. Démontrez que l'équation f(x) = 0 admet une unique solution α dans $[0,\pi]$. Donner à la calculatrice un encadrement à 0,1 près de α .

Exercices.

EXERCICE 11. On note :
$$P_1(x) = 1 + x$$
, $P_2(x) = 1 + x + \frac{x^2}{2!}$, $P_3 = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$.

1. Étudiez le sens de variation des trois fonctions définies sur \mathbb{R} par P_1 , P_2 et P_3 et tracez leurs courbes représentatives \mathscr{C}_1 , \mathscr{C}_2 , \mathscr{C}_3 sur un même graphique. on précisera les positions relatives de ces trois courbes ainsi que leur points d'intersections deux à deux.

On se propose de calculer la racine de l'équation $P_3(x) = 0$.

- 2. On note r cette racine. Montrez que r existe et est unique. Donnez un encadrement de r d'une longueur égale à 10^{-2} .
- 3. Montrez que si t = -r, t vérifie la relation : $t = 3\frac{2+t^2}{6+t^2}$.
- 4. Étudiez la fonction φ définie sur \mathbb{R} par : $\varphi(x) = \frac{3(2+x^2)}{6+x^2}$. Tracez sa courbe représentative sur [0;3]. Cherchez le maximum de la dérivée φ' de φ lorsque x est positif.
- 5. Pour calculer une valeur approchée de t on construit la suite : $u_0 = 1,59$ et $u_{n+1} = \varphi(u_n)$ quel que soit $n \in \mathbb{N}$.
 - (a) Calculez $u_{n+1} t$ en fonction de u_n et de t.
 - (b) Montrez que : $u_n t$ est de signe constant, u_n appartient à l'intervalle [1; 1,6], $|u_{n+1} t| < \frac{12}{7\times 8,5} |u_n^2 t^2| < \frac{12\times 3,2}{7\times 8,5} |u_n t|, |u_{n+1} t| < \frac{12}{8,5^2} |u_n^2 t^2| < 0.532 |u_n t|.$ Déduisez-en que la suite (u_n) converge vers t.

EXERCICE 12. Bac 1976 Série C remplacement Clermont-Ferrand. Soit f la fonction numérique de la variable réelle x définie par $f(x) = \ln(x^2 - 1) + \frac{1}{x^2 - 1}$.

- 1. Résolvez dans \mathbb{R} l'équation $\ln(x^2-1) = \ln(x+1) + \ln(x-1)$. Même question pour l'équation $\ln(x^2-1) = 2\ln(x=+\ln\left(1-\frac{1}{x}\right)$. Calculez $\lim_{x\to+\infty}\frac{\ln(x^2-1)}{x}$.
- 2. Étudiez les variations de f et la représenter graphiquement.

EXERCICE 13. Bac C 1988. Bordeaux, Caen, Clermont-Ferrand, Limoges, Nantes, Orléans-Tours, Poitiers, Rennes. Le but du problème est d'étudier la fonction f définie sur $]0, + \infty[$ par : $f(x) = \frac{1}{x}(x^2 + 1 - \ln(x))$ et de construire sa courbe représentative \mathscr{C} , ce qui fait l'objet de la partie I, puis de décrire un procédé d'approximation du nombre α pour lequel f atteint son minimum, ce qui fait l'objet de la partie II.

I Étude de f et construction de \mathscr{C} .

1. Étude d'une fonction auxiliaire.

Soit g la fonction numérique définie sur $]0, +\infty[$ par : $g(x) = x^2 + \ln(x) - 2$.

- (a) Étudiez le sens de variation de g et ses limites en 0 et $+\infty$. (On ne demande pas la représentation graphique de g.)
- (b) Déduisez-en que l'équation g(x) = 0 admet une solution α et une seule et que : $1.30 \le \alpha \le 1.35$.
- (c) Étudiez le signe de g(x).
- 2. Étude de f.
 - (a) Étudiez les limites de f en 0 et $+\infty$.
 - (b) Exprimez f' à l'aide de g(x). Déduisez-en le sens de variation de f.
- 3. Construction de la courbe \mathscr{C} .

Le plan est rapport au repère orthonormal (O, \vec{i}, \vec{j}) . On choisit pour unité graphique 2 cm.

- (a) Montrez que la droite Δ d'équation y=x est asymptote en $+\infty$ à la courbe \mathscr{C} .
- (b) Déterminez le point d'intersection B de $\mathscr C$ et de Δ ; précisez la position de $\mathscr C$ par rapport à Δ .
- (c) Construisez la courbe $\mathscr C$ et la droite Δ , en précisant la tangente en B à $\mathscr C$.
- 4. Calcul d'un aire.

Pour tout nombre réel $t \ge e$ calculez l'aire A(t) de la portion de plan comprise entre $\mathscr C$ et Δ et les droites d'équations x = e et x = t.

II Approximation de α .

- 1. (a) Montrez que l'équation g(x) = 0 est équivalente à l'équation h(x) = x, où h est la fonction définie sur I = [1,30;1,35] par : $h(x) = \sqrt{2 \ln(x)}$.
 - (b) Justifiez la décroissance de h sur I et montrez que pour tout éément x de I, h(x) appartient à I.
 - (c) Prouvez que, pour tout élément x de $I: -\frac{1}{3} \le f'(x) \le 0$.
 - (d) Déduisez-en que pour tout élément x de $I: |h(x) \alpha| \le \frac{1}{3} |x \alpha|$.
- 2. Soit (u_n) la suite d'éléments de I définie par la relation de récurrence $u_{n+1} = h(u_n)$ et la condition initiale $u_0 = 1,30$.
 - (a) Montrez que pour tout entier $n: |u_{n+1} \alpha| \le \frac{1}{3} |u_n \alpha|$.
 - (b) Déduisez-en que pour tout entier $n: |u_n \alpha| \leq \frac{5}{100} \left(\frac{1}{3}\right)^n$.
 - (c) Déterminez la limite de la suite (u_n) .
 - (d) Précisez un entier n_0 tel que $|u_{n_0} \alpha| \le 10^{-6}$ et donnez la valeur de u_{n_0} .

EXERCICE 14. Bac série C 1968. Mexico. En étudiant les variations de la fonction y définie par $y(x) = \frac{x-1}{x+1} - \mathrm{e}^{-2x}$ (dont on ne construira pas le graphe), montrez que, dans l'ensemble des nombres réels positifs, l'équation $(x-1)\mathrm{e}^x - (x+1)\mathrm{e}^{-x} = 0$ admet une racine réelle et une seule.