Limites de fonctions.

Étude d'une fonction, étude des limites.

Voisinage d'une valeur a.

Définition de la limite d'une fonction en a.

Définition de la limite d'une fonction en a par valeurs inférieures ou supérieures.

Interprétation géométrique des limites finies en l'infini.

Interprétation géométrique des limites infinies en un réel.

Exemples de référence.

Opérations sur les limites.

Lever l'indétermination: expressions polynomiales et factions rationnelles.

EXERCICE 1. Soit f une fonction polynomiale de degré 3. Étudiez les limites de f à l'infini. EXERCICE 2. Déterminez les limites en $+\infty$ et $-\infty$ de la fonction f dans les cas suivants.

a)
$$f: x \mapsto -2x^7 + 4x^3 + x$$
.

$$f: x \mapsto \frac{2x^4 - 3x^3 + x^2 + x + 1}{2}$$

a)
$$f: x \mapsto -2x^7 + 4x^3 + x$$
.
b) $f: x \mapsto x^3 + 4x^2 - x^4$.
c) $f: x \mapsto \frac{2x^4 - 3x^3 + x^2 + x + 1}{7x^{32} - 13x^7 + x + 2}$.
d) $f: x \mapsto \frac{2x^3 + 10x^2 + x}{2x^3 + 10x^2 + x}$.
e) $f: x \mapsto \frac{7x^{32} - 13x^7 + x + 2}{-3x^{32} + x + \pi}$.

b)
$$f: x \mapsto x^3 + 4x^2 - x^4$$
.

d)
$$f: x \mapsto \frac{2x^3 + 10x^2 + x}{x^{12} + 1}$$

f)
$$f: x \mapsto \frac{2x^3 - x^3 + x^3}{2x^4 + x^4 + x^7}$$

Lever une indétermination: factoriser pour faire apparaître une croissance comparée.

EXERCICE 3. Déterminez les limites suivantes.

a)
$$\lim 3xe^x + 2e^x - 1$$
.

$$\dim_{x \to +\infty} 1 + \frac{e^x}{2x^2}$$

g)
$$\lim_{x \to +\infty} \frac{\delta x}{e}$$
.

$$\lim_{x \to +\infty} (x^2 + x + 3)$$

$$m) \lim_{x \to +\infty} x^2 - xe^x$$

a)
$$\lim_{x \to -\infty} 3xe^x + 2e^x - 1$$
. b) $\lim_{x \to -\infty} 1 - e^2x - x^3e^x$. c) $\lim_{x \to +\infty} 2 - \frac{4e^x}{x}$. d) $\lim_{x \to +\infty} 1 + \frac{e^x}{2x^2}$. e) $\lim_{x \to +\infty} 1 + \frac{4e^x}{\sqrt{x}}$. f) $\lim_{x \to +\infty} \frac{\sqrt{x}e^x}{x}$. g) $\lim_{x \to +\infty} \frac{5e}{e}$. h) $\lim_{x \to +\infty} \frac{5-3x}{e^x}$. i) $\lim_{x \to +\infty} (5x-1)e^x$. j) $\lim_{x \to +\infty} (x^2 + x + 3)e^x$. k) $\lim_{x \to +\infty} 3x - e^x$. l) $\lim_{x \to +\infty} 3x^2 - 2e^x$. m) $\lim_{x \to +\infty} x^2 - xe^x$. n) $\lim_{x \to +\infty} (e^x - x)e^x$.

e)
$$\lim_{x \to +\infty} 1 + \frac{4e^x}{\sqrt{x}}$$

$$\lim_{x \to +\infty} \frac{1}{5 - 3x}$$

h)
$$\lim_{x \to +\infty} \frac{5-3x}{e^x}$$

k)
$$\lim_{x \to +\infty} e^x$$

n)
$$\lim_{x \to +\infty} (e^x - x)e^x$$

c)
$$\lim_{x \to +\infty} 2 - \frac{4e^x}{x}$$

f)
$$\lim_{x \to +\infty} \frac{\sqrt{x}e^x}{x}$$
.

i)
$$\lim (5x-1)e^x$$
.

$$\lim_{x \to +\infty} 3x^2 - 2e^x.$$

Limites et compositions.

EXERCICE 4. Déterminez les limites suivantes.

a)
$$\lim_{x \to \pm \infty} \sqrt{x^2 + 3}.$$

a)
$$\lim_{x \to \pm \infty} \sqrt{x^2 + 3}$$
. b) $\lim_{x \to \pm \infty} e^{1 - 0.5x}$ d) $\lim_{x \to \pm \infty} \frac{1}{(x^2 + x + 1)^4}$. e) $\lim_{x \to -\infty} e^{3x - 2}$. g) $\lim_{x \to +\infty} e^{-x^2 + x + 1}$. h) $\lim_{x \to 0} \frac{e^{2}}{x \to \infty}$.

g)
$$\lim_{x \to +\infty} e^{-x^2 + x + 1}.$$

j)
$$\lim_{x \to +\infty} \sqrt{\frac{x^2 - 1}{4x^2 + 1}}$$
. k) $\lim_{x \to +\infty} 3xe^{3x}$.

b)
$$\lim_{x \to \pm \infty} e^{1 - 0.5x}.$$

e)
$$\lim_{x \to -\infty} e^{3x-2}.$$

$$h) \lim_{\substack{x \to 0 \\ x > 0}} e^{\frac{2}{x}}.$$

$$k) \lim_{x \to +\infty} 3x e^{3x}.$$

c)
$$\lim_{x \to \pm \infty} (5 - x)^3$$

c)
$$\lim_{x \to \pm \infty} (5 - x)^3$$
.
f) $\lim_{x \to +\infty} \sqrt{2 + x + e^{-x}}$.
i) $\lim_{x \to -\infty} (2 - 3e^{2x})^5$.

i)
$$\lim_{x \to -\infty} (2 - 3e^{2x})^5$$
.

$$\lim_{x \to +\infty} (2-x)e^{2-x}.$$

Théorème du point fixe.

EXERCICE 5. Soient (u_n) la suite définie par $u_0 = 2$ et $u_{n+1} = f(u_n)$ pour tout entier naturel n où f est la fonction définie sur $[1; +\infty[$ par $f(x) = \sqrt{1+x}$.

- 1. Justifiez que (u_n) est bien définie.
- 2. Étudiez les variations de f sur $[1; +\infty[$.
- 3. Montrez que la suite (u_n) est convergente.
- 4. Déterminez la limite de (u_n) .

EXERCICE 6. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=3$ et, pour tout $n\in\mathbb{N},\,u_{n+1}=\frac{1}{4}u_n^2$.

- 1. Si (u_n) converge quelles sont les valeurs possibles de sa limite ℓ ?
- 2. Montrez que pour tout $n \in \mathbb{N}$, $0 \le u_n \le 3$.
- 3. Étudiez le sens de variation de la suite (u_n) .
- 4. Prouvez que (u_n) converge et précisez sa limite.

EXERCICE 7. On considère la suite définie par $u_{n+1} = u_n^2 - u_n - 5$ pour tout $n \in \mathbb{N}$ et $u_0 = 1$. Si la suite converge quelle peut être sa limite?

EXERCICE 8. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x - 1}{e^x - x}$. On admet que f est strictement croissante sur [0;1].

- 1. Montrez que pour tout $x \in [0,1]$, f(x) appartient à [0,1].
- 2. Soit D la droite d'équation y = x.
 - (a) Montrez que $f(x) x = \frac{(1-x)g(x)}{e^x x}$ où g(x) est à déterminer.
 - (b) Du sens de variation de g déduire le signe de g(x) sur [0;1].
 - (c) Déduisez-en la position relative de D et de la courbe $\mathscr C$ représentant f.
- 3. Soit (u_n) la suite définie par $u_0 = \frac{1}{2}$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.
 - (a) Donnez une représentation graphique de $\mathscr C$ et D puis dessinez les quatre premiers termes de la suite (u_n) .
 - (b) Montrez que, pour tout entier naturel $n, 0 \le u_n \le 1$ et $u_n \le u_{n+1}$.
 - (c) Déduisez-en que (u_n) converge et précisez sa limite.

Exercices.

EXERCICE 9. Soit f la fonction définie sur $\mathcal{D}_f = \mathbb{R} \setminus \left\{ -\frac{3}{4} \right\}$ par $f(x) = \frac{2x+3}{4x+3}$.

- 1. Déterminez les limites de f aux bornes de son ensemble de définition.
- 2. Construisez le tableau de variation de f.

EXERCICE 10. On considère la suite réelle (u_n) définie par $u_0 \ge 4$ et $u_{n+1} = \sqrt{4 + u_n} - 2$ pour $n \ge 0$.

- 1. Montrez que u_n est défini pour tout $n \in \mathbb{N}$.
- 2. Montrez que si la suite (u_n) a une limite, cette limite est zéro.
- 3. Montrez que, pour $n \ge 1$, on a $u_n \ge -2$.
- 4. Montrez que, pour tout $n \in \mathbb{N}$, $u_n u_{n+1}$ a le même signe que u_n .
- 5. On suppose ici que $u_0 = 1$. Établissez que la suite (u_n) est monotone. A-t-elle une limite et si oui laquelle?

EXERCICE 11. Soit la suite numérique (u_n) définie par $u_0 \in [0;1]$ et la relation de récurrence : $u_{n+1} = \sqrt{\frac{1+u_n}{2}}$ pour tout entier naturel n.

- 1. montrez que pour tout entier naturel n, on a : $0 \le u_n \le 1$.
- 2. Montrez que (u_n) est croissante.
- 3. Déduisez-en quelle admet une limite que vous calculerez.
- 4. On pose $u_0 = \cos(\varphi)$ où $\varphi \in \left[0, \frac{\pi}{2}\right]$. Montrez par récurrence que $u_n = \cos\left(\frac{\varphi}{2^n}\right)$. Retrouvez les résultats du 3.

EXERCICE 12. On considère la suite (u_n) définie par $u_0 = 2$ et, pour tout $n \in \mathbb{N}$, $u_{n+1} = 5 - \frac{4}{u_n}$.

- 1. Dans un plan muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$ tel que $||\vec{i}|| = ||\vec{j}|| = 2$ cm, dessinez la courbe $\mathscr C$ représentative de la fonction f définie sur $]0, + \infty[$ par $f(x) = 5 \frac{4}{x}$ et la droite Δ d'équation y = x. Vous préciserez les points communs à ces deux courbes.
- 2. Étude de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (a) Montrez par récurrence que u_n est bien définie pour tout n et vérifie $1 < u_n < 4$.
 - (b) Montrez que la suite (u_n) est croissante.
 - (c) Déduisez-en le comportement de la suite (u_n) pour n tendant vers $+\infty$ et calculez éventuellement sa limite.
- 3. Représentez les quatre premiers termes de la suite (u_n) dans le repère $(O; \vec{i}, \vec{j})$ sur l'axe $(O; \vec{i})$, à l'aide de \mathscr{C} et de Δ .

EXERCICE 13. Bac série C et E 1988. Besançon, Dijon, Lyon, Grenoble, Nancy-Metz, Reims, Strasbourg. On se propose d'étudier la suite (u_n) définie sur l'ensemble des entiers naturels $\mathbb N$ par : $u_0 = 1$ et $u_{n+1} = u_n \mathrm{e}^{-u_n}$ pour tout entier n de $\mathbb N$ puis la convergence de la suite (S_n) définie par $S_n = \sum_{p=0}^n u_p$, pour tout entier n.

- 1. (a) Montrez que pour tout entier n, u_n est positif.
 - (b) Montrez que la suite (u_n) est décroissante.
 - (c) Déduisez-en qu'elle converge et trouvez sa limite.
- 2. Montrez que pour tout entier n de \mathbb{N} , $u_{n+1} = e^{-S_n}$ et déduisez-en que S_n tend vers $+\infty$ quand n tend vers l'infini.

EXERCICE 14. Bac série C 1068. Pondichéry. On considère l'application qui, au nombre réel x, fait correspondre le nombre réel $f(x) = \sqrt{x(x-3)^2}$. Étudiez la fonction f, construisez son graphe dans un repère orthonormé. Quelle particularité présente ce graphe au point d'abscisse 3?